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NASA TT F-667 

NUMERICAL METHODS FOR SOLVING PROBLEMS OF 
MECHANICS OF CONTINUOUS MEDIA 

0. M. Belotserkovskiy 

INTRODUCTION 

Present practical needs require that applied scientists cope with various - /3* 
types of problems which can, in most cases, be successfully solved with the 
required accuracy solely by numerical methods using electronic computers. 
This obviously does not mean that analytical methods which permit solutions in 
'klosed" form will not be further developed; however, it is entirely clear that 
the class of problems which may be solved in this manner is quite small and i t  is 
hence important to develop general numerical algorithms for  the study of prob- 
lems of mathematical physics. 
mechanics of continuous media (gasdynamics, theory of elasticity, etc. ), which 
is due to a number of circumstances. 

This appears to be particularly timely in the 

1. Difficulties in carrying out experiments. Experiments concerning 
phenomena attendant, for example, to hypersonic flight velocities are accom- 
panied by high temperatures, which result in dissociation and ionization and in 
a number of cases also in gas ffglow. It In these cases the modeling of the 
phenomenon under laboratory conditions is extremely difficult, since similitude 
between the full-scale specimen and the experimental model can no longer be 
obtained by satisfying the classical similitude criteria - equality of Mach and 
Reynolds numbers of the model and prototype. It is also required that absolute 
pressures and absolute temperatures be equal, which is possible only when the 
dimensions of the model and prototype a re  the same. All this shows the great 
technical difficulties and expense of experimental studies, without mentioning the 
fact that in many cases the experimental data are of highly limited nature. 

However, the above is not intended to degrade the importance of experiments. 
They will always remain the cornerstone of studies which verify (or  disprove) the 
model and solution of a given theoretical approach. 

2. Complexity of the equations used. The extensive use of numerical - /4 
methods in the mechanics of continuous media also follows from the fact that the 
equations of aerodynamics, gasdynamics and the theory of elasticity constitute a 
most complex (compared with other fields of mathematical physics) system of 
partial differential equations. 

In general, this is a mixed-type nonlinear system with an unknown shape of 
the transition surface (where the type of equation changes) and with "moving 
boundaries, ' I  i. e., the boundary conditions of the problem are specified at sur- 
faces or lines which themselves are  subject to determination during computations. 

~ ~ 

"Numbers in the margin indicate pagination in the foreign text. 
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Here the range of variation of starting functions is so wide that ordinary methods 
of analytic studies (linearization of equations, series expansion, the small-param- 
eter method, etc. ) a re  in general not suitable here for obtaining a complete 
solution of the problem. 

It should be noted that preliminary analytical solutions of the various proper- 
ties of the problem may be of great help in formulating large complex problems 
with computers, and sometimes are simply decisive for successful realization 
of the numerical algorithm. 

In the final analysis, the success of using a given algorithm with the 
smallest expenditure of machine time depends on the smoothness of the functions 
used. Hence the selection of independent variables, different forms of writing 
the starting system of equations (which may be mathematically equivalent, but 
not equivalent with respect to their approximate representation), the use of the 
exact integrals of the system, determination of directions along which the func- 
tions are represented, the structure of computational grids - all play an im- 
portant role in working out the numerical algorithm. 

3. We shall now consider still another feature of algorithms used in solving 
specific problems of mechanics of continuous media. At present, as  is known, 
numerical methods a re  coming into permanent use in investigations of design 
offices and research institutes. The numerous successes in the study of space, 
in the practice of optimal control, selection of efficient aircraft shapes, etc., 
owe a great deal to serial computations and the use of information thus obtained. 

efficiently algorithmed problem is much more complete and substantially cheaper 
than corresponding experiments. However, extensive practical use of numerical 
methods requires that these be sufficiently simple and reliable. 

The volume of information provided by a correctly stated, well modeled and - /5 

Thus, on the one hand, one has to deal here with very complicated 
mathematical problems, while on the other it is necessary to develop sufficiently 
simple and reliable numerical methods which can be used for serial computations 
under conditions prevailing in research institutes and design offices. 

This collection is primarily concerned with numerical methods of solving 
gasdynamic problems. In this sense the content of this series of articles is some- 
what more narrow than the collection’s title. 

We note first not only that no mathematical theorems of existence and 
uniqueness are proved for the overwhelming majority of gasdynamic problems, 
but that frequently it is not sure whether such theorems can be obtained at all. 
The mathematical statement proper of the problem is, as  a rule, not formulated 
within the rigorous meaning of this term, and only the physical statement is 
given, which is not the same thing. The mathematical difficulties in the study of 
problems of these types are  due to nonlinearity of equations and also to the large 
number of independent variables. 

The situation is similar with respect to methods for solving gasdynamic 
equations, Studies pertaining to the feasibility of implementing the algorithm, 
its convergence to the sought solution and stability have at present been carried 
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out rigorously only for linear systems, and in a number of cases only for equa- 
tions with constant coefficients. Being nevertheless faced with the need to solve 
the problem, the computational mathematician is forced to use algorithms al- 
ready known and to even a greater extent develop new methods the applicability 
of which does not have a rigorous mathematical proof. It should not be thought 
that the situation of such a mathematician differs much from that of any investi- 
gator in a new field. One can find a large number of examples in sciences, in- 
cluding mathematics, when new ideas and concepts arose and were successfully 
used without a rigorous substantiation, which appeared later. Obviously, this 
does not imply that new computational algorithms can be developed blindly, 
without regard for a clear statement of the problem and without delving deeply 

' 

into its physical meaning. This approach inevitably results in numerous mistakes; 
with the loss of time and what is most important, experience, which was obtained 
without a theoretical substantiation, not providing any basis for the subsequent 
development of the method. 

- /6 

Attention is called here to this generally simple problem for the reason that 
it has hitherto been considered by some that the main thing is to write the dif- 
ferential equations, and the rest  then reduces to a trivial substitution of finite 
differences for the derivatives and to programming, which is frequently given more 
than its deserved importance. In conjunction with this it is useful to formulate 
the principal stages in the numerical solution of mechanics of physics problems 
on an electronic computer as  follows: 1) construction of the physical model and 
mathematical statement of the problem; 2) development of a computational al- 
gorithm and its theoretical investigation; 3) programming (manual or  automatic) 
and formal debugging of the program; 4) procedural debugging of algorithm - 
checking its performance with specific problems; elimination of shortcomings and 
experimental study of the algorithm; 5) serial computations, accumulation of ex- 
perience, estimating the effectiveness and limits of applicability of the algorithm. 

Mathematical theory, physical and numerical experiments using the computer 
a re  used together and consistently at all stages. How this is done at each stage 
is best illustrated by solving specific problems, which shall be done below. 
Hence only a few general remarks are  in order here. 

The basic principle of using mathematical results consists in the fact that 
conditions allowing one to solve a problem in the simpler and more particular 
cases should be satisfied also for more general and complicated cases. At the 
same time the consideration of the physics of the .phenomenon provides a 
qualitative picture which is used for checking and refining the statement of the 
problem. Finally, the final experimental check makes it possible to determine 
the correctness of the assumptions made and to give an estimate of the algorithm 
and of the solution, in particular of the latter's accuracy. It should be noted 
here that the accuracy of the numerical solution of a formulated differential prob- 
lem should be checked purely mathematically, without resort to physical experi- 
mental data. The latter can used for qualitative comparisons, while quantitative 
comparison of calculations with the experiment should provide information on the 
extent to which the assumed physical model approaches actual conditions. 

- /7 

The lecture series "Numerical Methods for Solving Problems of Mechanics 
of Continuous Media" consists of a number of communications illuminating 
different approaches in this field. Analysis is based chiefly on specific examples. 
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In a number of cases the topics of the papers are similar and it is possi- 
ble that the same problem is presented by the lectures from different points of 
view. This is natural, since one of the tasks of the summer session was to 
familiarize the participants with different aspects and points of view which 
arose over a wide range of research with the advent of electronic computers and 
made it in general possible to obtain sufficiently accurate solution of complete 
equations of gasdynamics, meteorology, etc. 

The first to be presented are finite-difference methods, and these are 
followed by schemes of the numerical method of integral relations and by the meth- 
od of characteristics. This subdivision of methods into the above groups is quite 
arbitrary, since many finite-difference schemes require satisfaction of integral 
relations (conservation laws), while schemes involving the use of characteristics 
are  substanti ally difference methods using special characteristic grids. 

V. V. Rusanov and V. F. D'yachenko present in their lectures finite-difference 
methods for solving unsteady gasdynamic problems (stabilization methods, meth- 
ods of "through" computation, problem of breakup of an arbitrary discontinuity, 
etc. ). G. I. Marchuk considers difference schemes of the "decomposition" method 
and touches upon questions of its application in problems of dynamic meteorology 
and hydrodynamics. The use of the small-parameter method in constructing 
numerical solutions of equations of mathematical physics is considered in the 
lecture by A. A. Dorodnitsyn. 0. M. Belotserkovskiy presents numerical meth- 
ods for solving steady-state gasdynamics problems (method of integral relations 
and lines, numerical method of characteristics, schemes with pseudo-viscosity 
and their applications). V. V. Shchennikovconsiders schemes of the method of 
integral relations and of the finite-difference method as applied to calculation of 
viscous boundary layer flows. 

The selection of problems used to illustrate the numerical methods is ob- 
viously related to the interests of the lecturers and in no way pretends to fully 
describe the application of the given method. 

Despite the fact that this collection is published quite some time after the 
session was held, it was decided not to supplement the collection in any way, 
since this would only delay its publication. 

November, 1969. 0. M. Belotserkovskiy 
V.V. Rusanov 
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DIFFERENCE METHODS IN SOLVING PROBLEMS 
OF GASDYNAMICS 

V.V. Rusanov 

1. Some Information . .. . from - . Gasdynamics . 
... 

Let us consider the flow of gas occurring in some region in  space. Let r be 
the radius vector of the point and t the time. The principal flow variables of the* 
gas: velocity U, pressure p, density p and others a re  defined for a gas particle 
located at the given point at the given time and a re  functions of r and t. The gas 
flow is called steady if the functions governing it a re  independent of time, i. e., 
if the state of the gas in a given point in space does not change with time. In the 
opposite case the flow is called unsteady. 

- /9 

Let f(r, t) be some parameter of the gas. W e  can follow its change with time 
in two ways - either at a given point with r = const, o r  for a given particle, in 
which case r = R(t), where R(t) describes the path traversed by the particle. 
The change in the first case is defined by the derivative d f /  d t I cOnS t .  In the 

second case f(r, t) = f(R(t), t) and - df - - - af +%edR this expression is called the 
total derivative. 

dt J t  J'R dt ' 

If f is a scalar function, then a f /dR  = grad f . If if is a vector, then J f / J R  
is a tensor. 

To find dR/dt we note that r = R(t) is the equation of the path of a particle 
which at time t in point r has a velocity U(r ,  t). Hence dR/dt = U and the ex- 
pression for the total derivative is 

df af + V p d f .  z i  =dt 

In addition to the pressure and density we will have to deal with the following /10 - 
functions: T - temperature, E - internal energy of unit mass consisting of the 
total energy of the molecdes, h - enthalpy and S - entropy. Only two of the above 
quantities a re  independent. We shall assume that these are pressure p and density 
p and shall treat the other quantities as functions thereof. 

-- _. - _ _ _ -  .. _ _  - __ ._ - 

*A "gas particle" is an arbitrary concept, denoting a small gas volume with- 
in which all the flow variables can be regarded as  constant, but which still con- 
tains enough molecules so that it can be treated as  a continuum. 
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The equations of motion of a gas can be obtained by applying to an individual 
gas particle the basic laws of physics and mechanics - laws of conservation of 
mass, momentum and energy, with allowance for thermodynamic processes oc- 
curring in the particle. We consider the equilibrium flow of a gas, i. e. , a flow 
such that during any given time the interaction between gas particles is of purely 
mechanical nature. 

dP The gasdynamic equations in this case have the form: - + p &VU = 0 - equa- dt 
tion of conservation of mass; &! + 1 grad p = 0 - equation of conservation of mo- dt P 

mentum, and p !& + PdivU = 0 - equation of conservation of energy. dt 
Combining the first and third equations, we get 

Expression dS/dt = 0 means that the entropy is constant along the particle 
path, and in steady flow it is constant along the streamline. Finally, the last 
equation can be transformed to the following form, which shall be subsequently 
used: 

- dP + pc2divU=O, 
dt 

where 

2 Quantity c is a function of p and p and, as is known from acoustics, is the 
square of the speed of sound. 

For an ideal gas with constant ratio of specific heats y = $/cv we have 

Both steady and unsteady problems of gasdynamics can be subdivided into one-, 
two- and three-dimensional, depending on the number of space coordinates on 
which the gas flow substantially depends. We shall basically consider problems 
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with three variables, i. e. , we shall consider unsteady two-dimensional and steady 
three-dimensional problems. 

In addition to differential equations, we will have to deal with boundary con- 
ditions. In problems to be considered one encounters two types of boundary sur- 
faces - impenetrable surface of a body and the shock wave. A boundary con- 
dition at the surface of a body is simply the condition of impermeability, i. e. , 
requirement that the velocity component normal to the body be zero. 

The boundary conditions at  a shock wave are  somewhat more complicated. 
Let us examine the surface of a shock which is a surface of discontinuity of gas- 
dynamic functions. Let P be the normal to the shock wave and D the absolute 
shock wave velocity in space in the direction of this normal (the velocity with 
which the wave surface moves in space along the normal); then vD is the vector 
velocity of the wave. Both v and D are functions of a point on the wave surface. 
The gas velocity relative to the wave is expressed by the equation 

Let f, and f be the values of some function f on the two sides of the shock wave. 
We denote the jump in function f across the wave by [fl : 

- 

Sfl.= f+-f, 

We note that the velocity V of the gas relative to the wave as well a s  its 
velocity U in space a re  different on both sides of the shock wave, while the 
velocity v D of the wave proper in space is naturally the same on both sides of 
the wave. The boundary conditions at the shock wave are  thus written as: 

2 [ e V , l - O :  [U,I-O; [ p + p V , I  2 -0; [ h + + l ,  

where V, is the projection of V on the normal, V ,, = U,- D ,  and U, is the 
velocity component in the plane tangent to the shock surface. 
D = 0, i. e. , the shock wave is stationary in space. 

For steady flow 

Some remarks now on the characteristics of gasdynamic equations. The 
concept of characteristics of partial differential equations has many aspects. 
From the point of view of the theory of differential equations a surface is called a 
characteristic if under the initial conditions on it the Cauchy problem is unsolvable. 
Another property of a characteristic surface is the fact that some differential 
relation between the sought functions is satisfied in each of its points; here all the 
differentiations are made along directions lying in the plane tangent to the surface. 
Both these properties are closely interrelated and can serve as points of departure 
for determining the characteristic surface. 
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It can also be shown that characteristics are surfaces of weak discontinuities, 
i. e.,  discontinuities of derivatives in the solution, and surfaces along which 
small perturbations are propagated through the gas. This latter property wil l  be 
of primary interest here. 

E we examine all the characteristic surfaces passing through one point, their 
envelope will form some surface similar to a deformed cone and termed the 
characteristic conoid. This conoid has the property that a small perturbation 
originating at a point propagates over a region bounded by the inner surface of 
the characteristic conoid with a vertex at this point. 

The conical surface tangent to the characteristic conoid and having a common 
vortex with it is called the characteristic cone. 
a very graphic physical and geometric interpretation in the case of three inde- 
pendent variables, i. e. ,  in the case of unsteady two-dimensional and steady 
three-dimensional flows. 

The characteristic cone permits 

Let us, for example, examine the two-dimensional unsteady flow in the (x, y) 
surface, the third coordinate being the time t. It is assumed for simplicity that 
all the quantities change little in the vicinity of the point under study; in particular, 
i t  is assumed that the gas velocity and the speed of sound can be regarded as 
constant over a small time interval. Let this velocity in the (x, y) plane be repre- 
sented by the vector U, and let a t  some time t = 0 a small disturbance, from 
which a sonic wave propagates with velocity c, initiate in the coordinate origin. 

/: 

During the time t the particle moves over segment Ut, while the disturbance 
propagates to all sides of it through a distance ct, and at time t the disturbed 
region will have a circular shape. Treating t a s  a parameter, we will get in the 
(r, t) space some cone, the section of which by plane t = const is a circle with a 
center at point Ut and radius c t  (Fig. l).. This is the characteristic cone for a 
two-dimensional unsteady flow. 

Figure 1. 
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In this case the characteristic cone will always exist, irrespective of the 
This is due to the fact that unsteady gasdy- magnitude of velocities U and c. 

namic equations a re  always hyperbolic, i. e. , a real characteristic cone always 
exists. 

The perturbation is maintained also in the particle in which it originates; 
hence still another line will exist inside the cone, i. e. , the path of the particle, 
along which the perturbation will also move. This line is a degenerate char- 
acteristic cone. 

We also note that the characteristic cone does not touch and does not inter- 
sect the plane t = const, i. e .  , it moves out of it. This circumstance ensures 
that the Cauchy problem for the equations under study with initial conditions at  
t = t always has a solution, i. e.,  these surfaces (of plane t = const) are not char- 0 
acteris tic. 

At any instant in time the perturbation originating at some point propagates 
only over a finite distance and conversely, for any point P, lying on the plane 
t >  t o  all the points in the plane t = t which can affect it lie inside the base of the 
characteristic cone with vertex at  point P. The dependence domain of point P is 
bounded. 

0 

/14 If we take three space variables, then the situation will be similar. The - 
characteristic cone, or hypercone, never intersects the space t = const. Hence 
any surface lying outside the characteristic cone and not intersecting it is said to 
be a three-dimensional type surface. 

This three-dimensional type surface has the property that the Cauchy problem 
with the initial conditions imposed on i t  has a solution at some close proximity to 
the surface. 

In addition to surfaces t = const, surfaces f(x, y) = const may also be sur- 
faces of three-dimensional type. The Cauchy problem with initial data at f(x, y) = 
= const physically means that the initial conditions are specified at  some stationary 
line. 

A surface f(x, y) = const can be a three-dimensional type surface only in the 
case of U > c. E, however, U < c ,  then the characteristic cone will include within 
i t  the time axis t, the surface f(x, y) = const will always intersect i t  and, conse- 
quently, it will no longer be a three-dimensional type surface. 

When U> c the cone for steady three-dimensional flow exists and is real and 
the equations are hyperbolic. This is the case of supersonic flow. When < c 
the flow is subsonic and the steady-state equations a re  elliptical. 

A similar situation also exists for three-dimensional steady-state flows. 
In this case the term three-dimensional type surface is also applied to any sur- 
face not intersecting the characteristic cone (if the latter is real). 
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2. Supersonic Gas Flow Around a Blunt Body. 
Statement of the Problem* 

Let us consider an arbitrary smooth body placed in a supersonic gas flow, 
uniform and steady at infinity, with velocity UOD, pressure p and density p, . 
Determination of the flow about the body reduces to finding a solution to the gas- 
dynamic equation, satisfying the condition of impermeability at the body's sur- 
face and taking the specified values at infinity. However, the problem as here 
stated does not a priori have a unique solution [41 and at present there is no 
theoretical basis for selecting the required solution. Hence use must be made 
of existing experimental data and one must postulate certain qualitative proper- 
ties of the solution beforehand. Thus, it is well known that a shock wave is 
produced ahead of the forward part of a blunt body placed in a steady supersonic 
flow and that this wave separates the flow region adjoining the body from the 
undisturbed flow. Here the flow immediately behind the wave will be -- a priori 
known to be subsonic at points where the angle made by the wave surface with 
the vector of the undisturbed flow velocity Um is larger than some value which 
depends on the Mach number Mm. 

If the body is bounded in a direction perpendicular to UOD, then sufficiently 
far downstream the flow will again become supersonic and a transition surface 
will terminate the subsonic region. 

OD 

- /I5 

Postulation of the flow pattern sharply reduces the class of permissible so- 
lutions and one may expect uniqueness of the solution, if such exists. Obviously, 
the latter wil l  not always be true and there arises the problem of describing the 
class of bodies for which the above flow pattern is actually obtained. 

From the mathematical point of view this question is just as complicated as 
the solution of the problem of supersonic flow past bodies in its general statement 
and at present no rigorous results a re  available on this point. Hence one must 
turn to experimental results and consider first the body shapes close to those for 
which the above flow pattern is actually obtained. 

Along with the results of physical experiments, the existence of a solution can 
also be inferred from those of numerical experiments. In fact, i f  we obtain a 
numerical solution for some body which would correspond to the postulated flow 
pattern, then this serves as a weighty proof of the existence of a solution of the 
differential equations. 

With the above observations in mind, we finally formulate the problem of 
flow around a body as follows. For a given body we shall seek the solution of 
gasdynamic equations in the region between the shock wave and the body on the 
assumption that no singularities exist in this region. The boundary condition at 
the body's surface is that of i ts  impermeability. The boundary conditions at the /& 

. . . . . . . . . . . . . . . . . . . . . . . . .  . _. - . _ _  - - . . -. ._ __ . . . . . .  - 

*The most of the results presented in this and subsequent sections were 
published previously in [ 1-3 1. 
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shock wave, the location of which is to be determined, are the standard relation- 
ships at the discontinuity surface. 

If the dimensions of the body are finite, then the solution of the kind sought 
does not a priori exist in its entire vicinity. Someplace in the afterbody its con- 
tinuity may be disturbed (as a rule, a second "tail" shock wave is observed in 
experiments). However, these features do not affect the supersonic and subsonic 
regions farther downstream, where the solution can be found independently. 

Here the overall problem naturally decomposes into two parts. We separate 
the space between the wave and the body into two parts, I and 11, by a surface II 
in such a manner that i t  lies in the supersonic region and is of the three-dimensional 
type (Fig. 2). Then the first problem will be determination of the flow in the bow 
part, in region I, where the equations a re  of the mixed type. The second problem 
is determination of the flow in the purely supersonic region 11, where the equations 
are hyperbolic. 

Figure 2. 

We shall first consider the solution of the second problem, assuming that the 
first has been solved and the values of all the functions at  
region II we will get a mixed problem with a free boundary for hyperbolic equa- 
tions with three independent variables. If i t  were possible to construct an 
algorithm which would be used for finding the sought functions at a surface nl, 
situated farther downstream, from their values at n , then the process could be 
repeated and the solution in region I1 could be constructed as long as the the 
postulated flow pattern is maintained. 

are known. Then in 

Up to now all the deliberations have been of a general nature. Now it is ex- 
pedient to make them more precise, introducing a certain coordinate system and 
writing equations and boundary conditions within this system. 

We start with the cylindrical coordinates (z , r , Q ) whose axis is drawn inside 
the body in such a manner that it has one common point with it. Let u, v and w 
be the components of the velocity vector D along the coordinate axes. The system 
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of steady equations of gasdynamics is written in matrix form 

For example, 

etc. 

Although it is easy to write equations in cylindrical coordinates, it is in- 
convenient to use them for solving the mixed problem, since the region has an 
unknown boundary. Hence we replace the independent variables, replacing 
(z, r , '9) by coordinates ( 6 ,  q , &), so that the coordinate surface 4 = o and 6 = 1 
would be respectively the surface of the body and of the shock wave. 
doing so is the following. We mark out for  each q on the z axis a point A with 
coordiante z = 6 (q) and draw a cone with apex half-angle w (q) with a vertex in 
this point (Fig. 3). 

One way of 

Let the cone's generatrix intersect the surfaces of the body and the shock 
wave at points B and C ,  respectively in the plane 'P = 9 = const. Let P be any 
point lying on segment BC. We denote 

and 

B P I  A P -  G 
F - G '  

Then i t  is easy to see that 

is precisely the sought substitution of variables. 
12 



Figure 3. 

If surfaces q = const are  of the three-dimensional type, then they can be 
used a s  a system of surfaces II and mixed problem in the region with fixed bound- 
aries 

can be considered for the system 

where A, B and C are  matrices which a re  functions of X and of the derivatives of 
z and r with respect to 5, q and 8 .  
the initial conditions are  specified at  q = qo . The boundary conditions a re  speci- 
fied at 4 = o and 5 = 1. 
tives of the new coordinates with respect to the old, including also derivatives of 
the sought function F, defining the wave shape. 

The system is assumed to be ?-hyperbolic and 

The coefficients of this transformed system contain deriva- 

We have thus reduced the finding of the solution in region I1 to the mixed - /I9 
problem for a hyperbolic system of equations in a region of very simple shape. 
At all the points of this region we seek the values of components of vector X, 
while at points of the boundary 4 = 1 we seek the values of the function F for which 
the initial values are  known at the segment 4 = 1, q = qo 
equation needed for finding function F is contained in the boundary conditions at the 
wave. In fact, the boundary conditions contain function F proper, as well as its 
derivatives F ,, and F& . Upon eliminating Fq from them, we get four conditions 
relating the components of vector X and a fifth condition from which the value of 
F,, is determined. 

the surface of the body and the transition surface or, more precisely, the limiting 

0s 4.127~. The differential 

We  now examine the problem in region I. It is bounded by the shock wave, 
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characteristic surface. * The difference in the type of equations in regions I 
and 11 is responsible for the substantially different statements of the problems. 
In the case of supersonic flow, when the equations a re  hyperbolic, the calculations 
can be carried out in sequence from the initial surface downstream, which 
appreciably simplifies the solution. In the case of mixed-type equations, the 
disturbances propagate from each point in all directions and the problem has to 
be solved simultaneously for the entire region. A very effective way for solving 
these problems is the so-called stabilization method. It is based on the physical 
fact that under actual conditions the flow about the body always arises as the 
limit of the unsteady flow in a sufficiently prolonged motion of a body with constant 
velocity and with constant fluid parameters. 
for constant boundary conditions at the body and at infinity, the solution of the 
problem of unsteady flow past a body will approach the solution of the steady 
problem as  time approaches infinity, irrespective of the initial flow. Since the 
equations of unsteady gas flow are always hyperbolic, the problem reduces to 
solving the mixed problem for a hyperbolic system of equations. With reference 
to the qualitative flow pattern, the boundary conditions for the problem at hand 
should be specified at the surface of the body and at the shock wave, the location 
of the latter not being a priori known. Instead of the characteristic surface it is 
more expedient to consider the previously introduced surface II , located in the 
supersonic region. If II is of the three-dimensional type at any given time,then it 
is unnecessary to specify any boundary conditions on this surface. 

It therefore should be expected that 

-- 

The mathematical formulation of the unsteady problem is obtained directly 
from the steady problem formulated above. One only has to write the total deriva- 
tive in the differential equations with allowance for the explicit time dependence of 
functions. The introduction of the previously mentioned coordinate system (4, q ,a) 
will transform region I into one with constant boundaries, and the final equations 
acquire a derivative with respect to time: 

- + A - + B - + C - + r = O .  dX d X  d X  d X  
d t  d e  dq drP 

The mixed problem is stated for the region 

The initial conditions are  specified for t = to and the boundary conditions a re  given 

a t g - O a n d e - 1 .  

It is assumed that surface q = 0 degenerates into the z axis. There is no 
need to specify boundary conditions at q = 0, but some measures must be taken in 

~ -- - . . __ . . . .. . . . . .  . .~ 

*The latter is defined as that characteristic surface of all such surfaces 
having common points with the transition surface which is farthest removed from 
the latter. 
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order to remove the singularity introduced by the cylindrical coordinate system 
at r = 0. As we see, the problem reduces to a system with four independent 
variables. If the flow is axisymmetric, i. e. , if there is no dependence on &,, 
then we again get a system with three variables. For simplicity this is the only 
case which is discussed subsequently. We note that if the bow part of the body 
is spherical, then for sufficiently large angles of attack axial symmetry may 
exist in region I relative to the direction of vector Um. 

Thus, determination of the flow in regions I and TI has been reduced to com- 
pletely analogous problems for hyperbolic systems. Before these are  solved by the 
difference method, we examine one more problem of the same type, namely,cal- 
culation of the flow past an arbitrary infinite cone. Such a flow is self-similar and 
all the functions retain constant values along rays drawn from the vertex. If in our 
substitution of variables we set C, (q) = q and w ( q )  = x / 2  , then it takes the form 

For a cone C = q g  (a) and F = q f (  9) should have a similar form. From this the 
direction of the ray drawn from the vertex is determined solely by the values of 
variables 4 and B. This means that in the case of conical flow functions U, p 
and p will not depend on q and the term dX/aq will drop out. Thus, in order to 
determine the flow about the cone one must solve the system of equations 

with boundary conditions at 4 = 0 and 5 = 1 .  
in region I and naturally suggests the use of the stabilization method for calculating 
the flow about a cone, in other words, carry out computations in region TI for the 
complete system of equations until all the functions cease being functions of q. 
Experiment has shown that this is actually possible and, moreover, the method 
was found quite effective for calculation of conical flows [ 11. 

This is very similar to the problem 

3. Description of the Difference Scheme for Solving 
Two-Dimensional Problems of Flows Past Bodies 

We shall now consider in detail the construction and investigation of the dif- 
The ference scheme using an unsteady axisymmetrical problem for illustration. 

difference scheme for the other problems of this type formulated above is con- 
structed similarly. 

Firstly, we state the problem in more detail. We shall seek the solution of 
the system of quasilinear equations 

t3X a t  - + A - + B = +  a5 d?  r - 0 ,  

15 



where 

in region t 2 t o  ; 0 6  E, = 1 ; 0 ,< 15 
vector X( t  , 4 ,  q) and function F( t , q) , which determines the shape of the wave. 
The system's coefficients a re  A, B and I' and the functions are  4,  qr X, F a  F,, and 

. The sought functions are the four-dimensional 

- /22 
We write the boundary conditions: 1) the condition at the body ( 4  = 0 )  Ft' 

U, -0 a n , u + n , v  -0, 

where nZ and nr a re  functions of q; 2) the condition at the wave ( 5  = 1) 

where v 
tangent to it; 

- I v z  vt I is the normal to the shock wave and 'E = b v r ,  v z I  is the 

u 'c I -vr u+vz u : 
U v = v z U + v r V ;  u v o o - v z u o o  + v r u m ;  

V, - U v  - D; 

- - vr u, + vz V , : 

vvm - uv,  - D. 

Components v z  and v r  of the normal a re  functions of q, F and Fq, but not of Ft. 
The wave velocity is a function of the above three variables and also of Ft. 

Expressions for v z a  vr  and D are  easily obtained from the shock wave equa- 
tion in parametric form 

16 



where 

And since 

then 

D - ( - V ~ C O S O  + v , s i n o ) . F L .  

We recall that D is the velocity with which the wave propagates normal to - /23 
itself, while Ft is the velocity at which this wave moves along line q = c o n s t .  

We now write the boundary conditions for q = o and q = qo. For q = 0 we have 
the symmetry condition 

There a re  no conditions at 9 = '10 (this is a three-dimensiondl type line). 

We now construct the difference scheme for this problem. W e  introduce in 
region.t>O;OSG.<l;  - O . < ' 1 s q 0  agridwithlatticespacings A t  =G A g  = h ,  = 

l / N  ; A q  = h, = q,/L. The difference scheme is written in two stages. First 
we assume that B = 0 and write the difference scheme for  the equation 

We introduce the notation 

The difference scheme is here written for the four points marked by crosses 
in Fig. 4. 
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We approximate the derivatives: 

where a + 6 = I ; ,a,@ xo . As is known, this scheme is stable a t  all the xl. 

n + f  n ' I t k  
m m+4 ,v 

Figure 4. 

Substituting these expressions into the differential equation and collecting 
like terms, the scheme takes the form 

The functions X (on the upper layer) and F enter the right-hand side of x only. 
through the coefficie,its of matrix A and the free term r, and 

a -E + 2  a x  lA; b- E - 2a n1 A. 

We have obtained a quasilinear system of difference equations. These equations 
are  supplemented inside the region by boundary conditions at the body and at the 
wave: 

for 6 = 0, 

y n + l  -0; n + l  
"s , l  u o * l  + * r , 1  0 , l  

18 



for g = 1 ,  

etc . 
The system of difference equations together with the boundary conditions 

n i l  yields a complete system for Xm . We shall solve it by the sweep method, 
assuming that the coefficients are known from the bottom layer. 

We denote 

We consider an expression such as  pmXm = gm. 
body (for 4 = 0) can always be written as: 

The boundary condition at the 

We shall calculate pm and gm in sequence, using equations for 3" (indices 
n + 1 and 1 are dropped), 

We assume for simplicity of mathematical manipulations that b is a nonsingular 
matrix. Then we find 

These two vectors already are coefficients of the expression we need, but in order 
to make the sweep stable, they must be normalized. If, however, we calculate p m+l 
using the expression for p* then the vector's components will increase with- 
out limit, since it can be shown that matrix b-l a always has an eigenvalue 
whose absolute magnitude is greater than unity. On the other hand, it is easy to 

m+l' 
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- see that the relationship p&+l Xm+l - g&+l is equivalent to that which will be 

obtained by multiplying both sides of the equation by some arbitrary nonzero 
number. Hence it is expedient to normalize vector p 
norm will in some sense always be unity, i. e., to take for pm+l the expression 

in such a manner that its m+l 

Any norm can be used, but it is most convenient to use the maximum of the abso- 
lute value of the components of p,. For gm+l we get 

In this case pm+l and gm+l a re  bounded and the forward sweep is stable. 

At  the wave we get 

since it can be shown that p is always zero. Together with the boundary 

conditions this yields a system of equations for XM and D which can be easily 

solved by iteration. First, specifying D, we find u, v and p from the system 
of equations (subscript M has been dropped): 

4, M 

Whereupon we find p and again D: 

2 2  
u v -  u v m  h - h  + 

2 00 

* D =  Uv00-D 

vm 
P -  P, U, - D  ' u v  - u  

Upon termination of iterations at the wave we have found X and D. Using D we - /26 

find Ft, after which it is possible to find Fn+l by integrating equation a = F, i 
at 

Xj,- , X3,-2 , ... , X, is found by a reverse sweep. We thus obtain a 
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solution at the upper layer on the assumption that the coefficients were determined 
for the bottom layer. 

In order to be able to implement this scheme of solution, it is necessary that 
the sweep be stable. 
quirement that the system be well conditioned for Xm. It can be shown that satis- 
factory conditionality is determined by the signs of the eigenvalues of matrix A ,  namely,. 
that among the eigenvalues of this matrix there should be three negative and one posi- 
tive value. This is due to the direction of the characteristic cone and geometrically 
can be interpreted as follows: one in the firection of increasing 5 ,  and three in 
the direction of decreasing 4 .  Since the central characteristic (the particle path) 
is a multiple, actually two characteristics a re  directed toward the body and one 
toward the wave. This direction of the characteristics is in agreement with the 
number of boundary conditions at the wave and the body. In fact, at the body there 
is a single relationship for X, and one characteristic departs from it. At the 
wave there actually exist three relationships for X and three characteristics de- 
part from the wave. 

Stability of the sweep in this case is identical with the re- 

The difference scheme was written on two assumptions: 1) that the coefficients 
of the equations and of the boundary conditions do not depend on P+l and Fn+l and 
2) that B = 0. The first assumption is removed by repeating the solution of the 
system, taking now the coefficients from the first iteration. 
done for B. In order to better understand how this is done, we again consider the 
particular case of A = 0 and r = 0: 

This can also be 

We first write the implicit system, expressing the derivatives as (Fig. 5): 

x 
P 

x i + ' - x ;  
t I 

C l ( f + '  --X"+') + P ( X ; + '  - x n  1 
1+1 1-1--  

Substituting them into the differential equations we get 

We investigate the above scheme for stability by the Fourier method on the 
assumption that all the eigenvalues ah of matrix B are real (k = 1, 2, 3, 4). 
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Figure 5. 

n ilyr n ilyr n 
Setting, as usual, X I = e 

I .  Eigenvalue Xk corresponding to the value of crk is written as: 

X, , X ;+l = l e  X, , we find an expression for 

whence it is seen that lhklL 1 if a? 6 , i. e. , the scheme will always be stable 
for 0.2 8 -  For  a = p it will be of the second order of accuracy. If a is slightly 
greater than g ,  then it has a second-order residual term with the coefficient 
( a  -g). All this pertains to a scheme regarded as implicit over the entire layer. 
We shall now solve it by iterations and calculate the value of X]r’+’ from the above 
formula, taking first the terms $1; in the righthand side at the bottom layer n; 
for the next iteration we shall use their values from the preceding iteration. In 
order to formalize this, we introduce the following notation: let  q be the number 

of the iteration, and let y+(q) be the value at the (n + 1)th layer at the qth iteration; 
here, if a total of Q iterations is made, then X?’(‘) is regarded as equal to the 
value of X at the (n + 1)th layer X n + ( Q )  = X n + l .  Then our formula takes the form 

n it being assumed here that X”+(O)  is simply X , i. e., that the zeroth iteration is 
the preceding layer. 

We now integrate using the formula. We first  assume that q = 0, calculate 
X?+(’), then take q = 1, etc. up to q = Q. 

/28 

. 

for a = p and will be close to it for an Q! slightly greater than 
means that, starting with the second iteration, the second order of accuracy is 
retained, hence not more than two iterations are needed from the point of view of 
accuracy. 

It can be shown that this scheme will still be of the second order of accuracy 
if q 2 2 .  This 
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We now consider the question of stability. When the equations contained 

simply *+', i. e. , when the scheme was implicit, it was stable for any ratio 
of lattice spacings when a 2 6.1 When, however, the system at theupper layer is solv - 
ed by iterations and the computations are stopped at some given iteration, then 
we in substance have an entirely different difference scheme, and its stability 
must be examined anew. 

We again denote X;+'q' = x ( 4 c i l Y  X," and substitute i t  into the scheme. 
Then upon division by c i l Y  , we get 

(q+1' Since vector X? is different from zero, we can write an equation which X 

and X'q) will satisfy, 
0 

If it is remembered that matrix B has eigenvalues ak, then the expression for 
x(q + can be found in terms of the preceding in explicit form 

Now this expression is used for calculating h corresponding to the Qth iteration 
and then the stability condition is checked. 

= I ,  we shall find kl) and Setting and clarify under which con- 
ditions the absolute value of X will be smaller than unity. W e  find 

The value of IX") I will be smaller than unity if 
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6 If a > # .  then Ix2 Uk-Sinyl 

uk may be different, the stability condition is taken as 
- a or  Y 2 k  'la 15 kl, a k = 1, 2, 3, 4. Since the 

Without the first multiplier, this would have been Courant's condition for the 
explicit scheme. The presence of the multiplier d x  decreases the per- 
missible lattice spacing. A s  a result, we obtain a condition for the stability of 
the difference system at A = 0. 

Now to construct the complete difference scheme we combine the two above 
schemes, writing an implicit sweep scheme in the 6 direction and an iteration 
scheme in the 7 direction. First we introduce the shift operators: 

Then the difference scheme can be written as: 

where 

The same scheme, in the form transformed for solution: 

2 4 
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/3 1 We first set q = 0, substitute into the coefficients the values of functions - 
from the bottom layer and calculate the first iteration, i. e. , for all the 1 we 

find X m , l  n+(l) F"+(')  , after which we substitute into the coefficients the value of 

the first iteration and repeat the sweep again. 

W e  shall examine the stability of the difference scheme. We set 

Investigation of its stability for  the case of noncommutating A and B is quite dif- 
ficult. 
of the stability shows that the absolute eigenvalue k q )  (cp, \y ) can be greater than 
unity in a very narrow range of frequencies (cp, y~ ) . 
must introduce into the scheme a second difference X:, I with respect to 1 ,  with a 
small coefficient. 

If A and B commutate (which is not true of gasdynamics), then examination 

To ensure total stability, one - /32 

Figures 6 and 7 depict some results obtained using the above scheme. 
Figure 6 shows the shapes of shock waves and the sonic curves with the char- 
acteristics adjoining to them for the flow past a sphere at  Mach numbers M 

from 1.25 to 4. 
acteristics on passing from M = 2 to Ma> = 4. Figure 7 shows the shape of the 
wave and of the sonic line for the flow past a body with a negative curvature seg- 
ment at Ma = 10. It is interesting to note that the location of the characteristics 
here is the same as for a sphere at markedly lower Ma. 

00 
One's attention is attracted by the change in  the location of char- 

00 

4. Calculation of Flow in the Supersonic Region _ _ _ _ _  - _ _  

In the supersonic region one usually deals with an equation with three 
variables 

and the solution of the problem which was stated for it is carried out using a 
scheme similar to that described above. The basic difference consists in the fact 
that vector X here has five components and the solution of equations at the wave is 
carried out somewhat differently from the technical point of view. As was noted 
previously, the qualitative features of the flow may require in some cases changes 
and refinements of the difference scheme. Thus, for example, in &symmetric 
flow past a blunt cone o r  cylinder the entropy at the body retains the value cor- 
responding to a plane shock. If we follow the streamlines we will find that each 
of them comes increasingly closer to the body's surface. 
at each streamline is constant and depends on the inclination of the shock wave at  

However, the entropy 
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Figure 7. 

the point where the latter is intersected by the streamline. Hence the distribution 
of the entropy along the normal to the body in the vicinity of the latter repeats its 
distribution along the wave, but in a very narrow zone, which results in the 
appearance of sharp entropy gradients, which increase continuously as one moves 
downstream. 
sures, for example, make the grid near the body more dense. 

To calculate this so-called entropy layer one must take special mea- 

Figures 8 and 9 show the distributions of pressure and density a s  functions of /33 - 
4 i n  different sections z = const for a cone with a spherical nose with an apex half- 
angle of 15O at Ma> = 10. It is seen from Fig. 8 that for z~ 25 the pressure distri- 
bution is virtually independent of z and coincides with the pressure on the unblunted 
cone. At the same time the density distribution (Fig. 9) follows the entropy varia- 
tion. The density maximum (and accordingly the entropy minimum) is attributable 
to the nonmonotonicity of the inclination of the shock wave relative to z, arising due 
to over-expansion of the flow in the region where the sphere joins the cone. 

Depending on the shape of the body and of its nose part, there may be several 
density maxima and minima, o r  there may be none, as in the flow past a cylinder 
with a spherically blunted nose at Mm = 10 (Figs. 10 and 11). Figure 11 depicts 
the density distribution about the surface of the cylinder as a function of r - 1 (the 
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Figure 9.  

*Translator's Note: Commas represent decimal points. 
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cylinder radius is unity). Here one can clearly see the formation of an asymptotic 
density distribution for large z. 

In the case of three-dimensional flow the pattern becomes even more compli- 
cated by the difference in behavior of the function relative to 6 for different IJ. 
Some results of calculations for a blunted cone at Ma = 4 with an apex half- 

angle 10' at angles of attack of 5, 10 and 15O are presented in Figs. 12-15. In 
particular, one's attention is attracted by the sharp difference in behavior of 
the density on the windward and leeward side as early as at a relatively small 
distance from the nose (see Fig. 14). 

Let us consider several more features peculiar to flow past a cone. The 
corresponding system of equations has the form 

Investigation shows that it is elliptical at points where the velocity component 
normal to the ray .g = const , 9 = const has an absolute magnitude smaller than 
the speed of sound, and it is hyperbolic when the opposite is true. Further, for 
a circular cone at small angles of attack the equations a re  always elliptical in the 
region between the wave and the body, but as the angle of attack is increased 
regions of hyperbolicity arise near the wave, and these are due primarily to a 
sharp rise in the velocity component w. As was pointed out previously, it is 
most convenient to calculate the flow past a conical body by the stabilization 
method, for which the existence or  nonexistence of regions of hyperbolicity is 
inconsequential. However, one must take into account some other features of 
the flow, for example, the behavior of the constant-entropy line. As has already 
been shown by Ferri, the function S(E,, 8) in the flow past a circular cone has a 
singularity inside the region 0s E, 5 i , 0 5 9s 2x. It can be shown in addition that 

at the cone surface = oo and a sharp change in the flow variables occurs near 
the surface. This layer with large gradients is usually called the vortex layer. 
The existence of singular entropy points and the behavior of the function near the 
surface must be taken into account in constructing the computational algorithm. 
When this is done it is possible to obtain satisfactory results when calculating 
flows with singularities and to also detect a number of fine details. Thus, 
Figs. 16 and 17 depict the shapes of shock waves and of constant-entropy curves 
for two cases of flow around a circular cone. Figure 16 presents results for 
the flow past a cone with apex half-angle 

d e  

p = 25O at angle of attack a = 200 and 
= 3. Figure 17  is plotted for p = 35O. CY = 100 and Ma = 5. 

It is emphasized that all the above results pertaining to singularities and 
flow details were obtained by a pure difference method, without using any 
asymptotic expansions o r  other analytical methods to account for the singularities. 
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Figure 12. 

Figure 13. 
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Figure 15. 
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Figure 16. 
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Figure 17. 
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METHODS OF SOLVING UNSTEADY PROBLEMS 
OF GASDYNAMICS 

B. F. D'yachenko 

1. Gasdynamic Equations 

The state of a continuous medium, be it a liquid or gas, is described by the 
distribution in space of various physical variables - the velocity u, density .p and 
internal energy per unit mass E.  Usually the pressure p, entropy S, tempera- 
ture T, etc. a re  also used, but all of them are functions of p and 6 .  The change 
in the state of a continuous medium with time t is described by the known gas- 
dynamic equations which, for the case when all the functions depend solely on the 
space coordinate x, can be written in the form 1 1  

I_ /40 

d p  d p n  + a 0  + PU 0; 
d t  +dx at ax 

where p - p ( p , ~ )  is specified. It is useful to clarify the physical meaning of the 
system of equations in (1.1). Each equation of this system has the form 

af d% 
dt d% 

+ -  - 0 ,  

where f is the distribution density of mass, momentum or energy, respectively, 
while g is the flux density of these same quantities. System of equations (1.1) is 
nothing other than the mathematical expression of the laws of conservation of 
mass, momentum and energy. 
infinitesimal rectangle with sides AX and A t  (Fig. 1). For definiteness, we shall 
consider the mass. Then f A x  is the mass contained within the interval b x,  while 
f ,AX-f lAX = A t  f A  x is the chznge in this mass during time A t .  On the other hand, 
B , A t  is the quantity of mass arriving into the interval during this time, and & A t  is 
the quantity of mass departing from it during the same time, i. e., the change in 
mass of the interval under study is 

In fact, let u s  consider in the plane x, t an 

/41 - 

By virtue of the law of conservation the two expressions for the change of 
mass should be equal to one another 

A , f A X  = - A , B A t .  
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Dividing the above equality by A X A t  and letting A x  and A t  go to zero, we get Eq. 
(1.2) i. e. , system of equations (1.1). 

We shall also use other forms of the 
system of equations of gasdynamics. Using 
obvious transformations, system (1.1) can 
be reduced to the form 

* 

a p  a p  au 
at ax + P Z  - O ;  
% + U -  au + p a x  i a P  -0; 

a e + u a L  P a u  
z at ax + V Z - O .  

- + u -  
$4 

4 

Figure 1. 
aP The derivative dx in the second of these 

equations can be written as  

(1.3) 

where p, and p E are  partial derivatives of the function p ( p ,  E )  , and then the 
system is linear relative to the derivatives of the principal functions p , u and E .  

The system of equations in (1.3) is called the Eulerian description. Here x 
corresponds to a given point in  space. One may transform the expressions to the 
so-called Lagrangian description, replacing x by the coordinate s corresponding 
to a given mass, a gas "particle. If It is simplest to do this as  follows [21. The 
first of equations (1.1) is the condition for the expression pdx- p u d t  to be a total 
differential. Hence it is possible to convert from x, t to the new coordinates s, 
tf defined as  

whence 

and, dropping the prime of t, we rewrite Eq. (1.3) in the form which we need 
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The fact that actually represents the mass is seen form the expression 

x 
S = so + $ p d X ,  

=. 
which is valid along t = const. The Eulerian coordinate x of the particle now 
becomes the unknown function, defined a s  

Finally, we derive still another form of the system of gasdynamic equations - 
the characteristic form. We multiply the first of equations (1 .3)  by p/ p 2  and sub- 
tract it from the third, yielding 

PI P, 4 Equation d E - 

Hence the above equation can be written as  

dp -0 has a solution 'S (p, €)-const, which is called the entropy. 
P 

dS+& 1 0 .  
at ax ( 1 . 5 )  

Taking further the linear combination of the three equations (1 .3 )  with coefficients 
p, , f P.C and p,, where 

we get 

d p + ( , , C ) -  dP * p C ' d U + ( l l f C , ) -  d U  - 0 .  
d t  d x  d t  a x  

Equations (1.5) and (1.6) have the following remarkable property. The - /43 
lefthand side of Eq. (1.5) has the derivative dS/dt, taken in the direction 

dx 
d t  
- =U. (1 .7)  
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It can hence be stated that along line (1.7), which is called a characteristic, we 
should have 

ds - 0 ,  (1.8) 

i. e. , the entropy is conserved. The lefthand side of Eq. (1.6) contains derivatives 
dp/dt and du/dt, taken in the direction 

dx 
dt 
- 9 U f C .  

(1.9) 

Hence the relationships 

d p  5 pcdu - 0 .  (1.10) 

must be satisfied along the characteristics (1.9). 

For the system of gasdynamic equations one states the Cauchy problem, i. e. , 
the solution is known at initial time t = 0 and it is required to find the solution for 
t > 0. Below we shall consider some approximate numerical methods for solving 
this problem. 

2. The Method of Characteristics 

The method is based on the property of hyperbolicity of the three equations 
of gasdynamics, which consists in the fact that it has three families of real 
characteristics (1.7) and (1.9). We describe this method first in the simplest 
form, when everywhere S(p, EI-S,, -const. In this case Eq. (1.8) is satisfied 
automatically and we need use only Eqs: (1.9) and (1.10). Let the solution be 
known at some collection of points (in particular, initial conditions). 

Let us consider some point MI (Fig. 2) and draw through it a ray (character- 

istic ( 1 . 9 ) )  in the direction of increasing t: 

% - I 1  

t -  t l  + C 1 '  

The subscript denotes the point 
point M be the closest to point 

2 

where the corresponding quantity is taken. Let 
M 1 from the right. We draw through point M2 - /44 

the characteristic of the second of the families in (1.9) 

x - x p  - I u -c2  8 

t -  t, 
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The point of intersection of both rays is denoted by M*. Equations (1.10) should 
be satisfied along the characteristics. Replacing the differentials therein by 
finite increments, we get 

i. e., a system of algebraic equations for p* and u*. 
found from 

Finally, p' and E' are 

Thus, knowing the solution at the points MI and M2, we obtain it at the point M* 

corresponding to a higher value of t. And this is so for each pair of points. Then 
we get the points M* thus obtained as reference points and make another time 
step, etc., up to the necessary times t. 

X 

Figure 2. 

Obviously, we get an approximate solution whose accuracy increases with the 
density of the points. 
the e r ror  is proportional to the first power of the distance between pairs M and 

M2 and corresponds to the Euler's method of broken lines for solvingordinary dif- 
ferential equations. A s  for the latter, the accuracy can be improved by recalcu- 
lation, i. e., by repeating each cycle of the calculations, taking for the slope of the 
characteristics u L c and coefficients p c half the sum of their values in M* and the 
initial values. In addition, the values obtained by this recalculation can be used to 

The above method is of the first order of accuracy, i. e. , 
1 

- /45 
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judge to some extent the accuracy of the initial calculation and to take appropriate 
measures by adding or dropping computational points. 

In order to better explain the substance of the method of characteristics, we 
considered the case of 'S( p ,  E ) =  const . The general case requires some additional 
computations. Namely, after the coordinates of M* (Fig. 2) and u* are found, one 
should draw through point M* the line 

x - x *  - r u e ,  
t -  t *  

corresponding to Eq. (1.7) up to intersection with segment MIMZ at point M3 

(Fig. 3). 

Values of S at points M1 and M a re  used for interpolation to point M and 2 3 
it is assumed by virtue of Eq. ( 1.8) that 

Then p* and E* we found from 

P(P*, E * ) = p * ;  S ( p * ,  E * )  = s o .  

As before, the results can be improved by recalculation. 

3. Discontinuous Solutions 

The above computational processes cannot be always extended over a suf- 
ficient time. This is not due to shortcomings of the method of characteristics, 
but due to nonlinearity of gasdynamic equations, as a result of which the char- 
acteristics of one family touch or intersect at some time instant [ 21. The manner 
in which such a singularity can occur in the solution is shown using the simple 
quasilinear equation 

This equation is solved simply. Along characteristic 

&,-U 
dt 

one must satisfy 
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i. e. , u = u = const along straight line x = x - 
0 0 

u t. Let the initial conditions be such that at 0 
some segment u(0, x) = x. It is easy to see 
that all the characteristics originating at points 
of this segment intersect at point x = 0, t = 1. 
Each characteristic contributes its value and the 
solution is no longer unique; an arbitrary discon- 
tinuity occurs, since the initial conditions outside 
of the above segment are arbitrary. 

M, 

' biz: 

5 

Figure 3. 

Precisely the same effect can be observed 
in solutions of the system of gasdynamic equa- 

tions. But the latter describes an actual physical process which cannot somehow 
cease at a certain instant. The way out of this situation is shown by physical ex- 
periments. It is necessary to introduce discontinuous solutions, i. e., one must 
assume that values of p , u and E may be discontinuous at some curves x = x(t). 
Obviously, the differential equations are meaningless at these curves and should 
be replaced by other relationships, reflecting the same laws of conservation of 
mass, momentum and energy. 

A s  in Sec. 1, we consider an infinitesimal rectangle with sides A x  and A t .  
Let the discontinuity line intersect this rectangle diagonally (Fig. 4). Denoting 
again the distribution density of some quantity by f and the flux density by g and 
repeating the considerations of Sec. 1, we get 

We divide the above expression by A t  and let the latter approach zero. We get 

where 

d X  D=- 
dt 

is the rate of propagation of the discontinuity. 

Replacing f and g by their expressions and denoting the differences of the cor- 
responding quantities for both sides of the discontinuity by brackets, we  write 
the needed conditions on the discontinuity 
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Let us now see how the method of characteristics 
Figure 4. changes in the presence of discontinuous solutions. In 

addition to the three families of characteristics with 
relationships holding on them, we now have discontinuity 

lines along which Eq. (3.1) should be satisfied. The latter contain seven quantities: 
p , u , E to the left and p, u, E to the right of the discontinuity, and D, the rate of 
propagation of the discontinuity. For determining these unknowns we have the 
three equations (3.1). The four additional relations needed should be supplied by 
characteristics "arriving" at the discontinuity line. Hence a discontinuous solution 
satisfying Eqs. (3.1) can exist only in the case when precisely four characteristics 
arrive at the discontinuity line. This condition is equivalent to the known thermo- 
dynamic condition that the entropy cannot decrease and it will subsequently be re- 
garded as  satisfied. 

There a re  two types of lines of discontinuity - shock waves and contact dis- 
continuities. The former a re  typified by the fact that of the four characteristics 
arriving at the shock three do so from one side and the fourth from the other. In 
the latter case two characteristics arrive from each side and the conditions at the 
discontinuity degenerate into 

i. e. , the contact discontinuity propagates along the characteristic. 

We can now return to the problem mentioned at  the beginning, on extending the 
solution to the case of an arbitrary discontinuity. 

4. The Break-Up of an Arbitrary Discontinuity 

At some time t = 0 let the solution have an arbitrary discontinuity at point 
x = 0. Since we must find a solution in the immediate vicinity of the coordinate 
origin (more precisely, the asymptotics of the solution as t + 0, x + 01, i t  suffices 
to consider the case of piecewise constant initial conditions [l, 2, 61 

I p-, u - ,  8 -  for I < 0; 

p + ,  u+, E +  for x > 0. 
(4.1) 

The gasdynamics equations with initial conditions (4.1) can be solved as a - /48 
function of x / t  '3. We use the characteristic form of Eqs. (1.5) and convert from 
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x, t to variable 4. We get a system of ordinary differential equations 

( u - c - - p c = o . J 
The initial conditions (4.1) now become the boundary conditions 

The fact that a boundary-value problem is stated for Eqs. (4.2), which form a 
first-order system should not seem strange, since we are  not restricted here to 
continuous solutions. 
(3. I), where D denotes the value of 4 at which the discontinuity occurs. The 
discontinuity should satisfy not only condition (3.1) but also the correctness con- 
dition, whereby four characteristics must arrive at the discontinuity. As we 
remember, we have three families of characteristics, the slopes of which are  
u - c y  u and u + c y  respectively. Depending on the number of characteristics 
arriving from right and left, we distinguish three types of discontinuity. For  a 
shock wave of the first type three characteristics arrive from the left and one from 
the right. This means that 

Possible discontinuities should as before satisfy conditions 

D < ( u - C )  < u 1 <  u 1 , + ~  1; 

( u - c ) , < D < u ,  < u ,  + c , .  (4.4) 

The next case is the contact discontinuity in which u and p are  continuous and 

Finally, if we have a shock wave of the second type, one characteristic arrives 
from the left and three from the right: 

We  turn to continuous solutions and classify them similarly. System of - /49 
equations (4.2) is homogeneous with respect to the derivatives and, consequently, 
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will have a nontrivial solution only if its determinant is zero. The latter can occur 
in only three cases. The first is that of (u- E,) = O., when dS # 0 and dp = du. 
This is the previously considered case of a contact discontinuity. Further, 

u - c  - 4 (4.5) 

and here 

E 

/_-- 

1 ds - 0; 
a p  + pcdu = 0. 

reached from i t  traveling with a rarefaction wave 
of the first type? Obviously, these points form a 
curve satisfying Eq. (4.6) and passing through a-. 
Variable 4 is a parameter along this curve and 
is defined by Eq. (4.5). At the point proper 
a-5 = E;-=u--c-. 

/&’ A a- _ _  
Hence we may start moving from B, 

(4.6) 

The solution satisfying Eqs. (4.5) and (4.6) will be termed a rarefaction wave of 
the first type. 

Finally, a rarefraction wave of the second type is obtained when 

and 

ds - 0 ;  
a p -  pCau  = 0 .  

Our problem is to construct a solution over the interval -< E,<+- satisfying 
boundary conditions (4.3), using the above types of solutions as well as  the 
trivial solutions p, u , E = const of system of equations (4.2). 

Conditions (3.1) at the discontinuity together 
with Eqs. (4.4) define the curve along which D is 

a parameter. This curve passes through a-, since the discontinuity may also be 
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infinitesimal. Here,  since 

u r  -c,  < D <  I I ~ - C ~ ,  

- - -  
then D at point a' is equal to II - c  -5 and decreases along the aforementioned 
curve, which is denoted by B1. It is easy to show that A1 and B1 have a second- 
order tangency at point a'. Thus, using solutions of the first type we can travel 
from point a- to any point al of curve A1 + B1, using the trivial solution 

( p ,  u, E )  E ( p,u, c)- over segment -m <.~,<4- or  -- < 4 < D. The set of 
points A1 + B1 cannot be expanded using solutions of the first type. In fact, let 

us, moving along curve A reach point a, i. e. , let us construct the solution to 

4 = 4 1 - U 1- C 1. 

shock wave of the first type since, by virtue of Eqs. (4.4), this has to be done at  
4 - D < u 1 - cl = 41. 
B using solutions of the first type. 

- /SO 

1' 
It is no longer possible to travel from a to some point with a 1 

Similar deliberation shows that one cannot move out from 
1 

Further, drawing through each point al of curve A 1 1  + B the lines 

p - const; 11 - const , 

we get a surface whose points can be reached from al using the contact discontinui- 
ty at 42 '111. This can be done since G 2 -  Ul>U1-Cl= 41 when a l c A 1  and 5 2 = u 1 > D  
when alc B1. 

Finally, we draw through each point of the surface thus obtained rarefraction 
waves of the second type in the direotion of increasing 4 = u + c y  and lines cor- 
responding to shock waves of the second type in the other direction. All the 
problems which arise in the process a re  solved similarly to those above and we 
find that for any point a+( p+ , u+, E+ ) the solution is generally obtained in three 
stages, i. e. , the solution has the following form: a contact discontinuity on each 
side of which there is either one shock wave o r  one rarefaction wave. At seg- 
ments between the contact discontinuity and the waves, as well as at the edges 
( 4 + f 
be written for each specific form of function p - p (p, E) .  

) we have p , u, E = con-s t .  Formulas giving the solution of the problem can 

5. . The - . S.K. Godunov Method 

Using the solution to the problem of break-up of an arbitrary discontinuity, 
one can construct the followipg original numerical method [ 61. 

/5 1 - The x axis is broken up into short intervals A x  and the initial conditions at  
each such interval are replaced by constants, i. e. , the functions are  approximated 
by piecewise-constant functions 
must solve the problem of break-up of an arbitrary discontinuity, and when this 
solution is obtained one can obtain p ( x ) ,  I( ( x )  and E ( X )  at  t - A t  for each pair of 

A t  the junction of each pair of intervals one 
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intervals. The time step A t  is selected so small that the solutions obtained for 
each two adjoining junctions do not interact. To carry out the following time step 
one must again have piecewise constant functions at layer t-A t. This requires 
that the solution be somewhat averaged over intervals A C .  This can be done most 
naturally by conserving the mass, momentum and energy at each interval, i. e., 
by finding new average T ,  u, G from the formulas 

- 1  .p = - J pdx; 

p u  I - J p t l d x ;  

AX 
-- 

A X -  ++ $) =& f p  (. + $+, 
where integration is carried out over each given interval. 

In regions where the solution is smooth the values of p, u , E for adjoining 
intervals differ little from one another and hence the formulas utilizing the 
solution of break-up of a discontinuity can be approximately replaced by simpler 
expressions. The latter can be obtained by carrying out a power series expansion 
of the former in p+ - Q-, etc. , and retaining the principal terms. The smooth- 
ness regions here are defined as those where the pressure gradient, for example, 
is smaller than some value. 

Under the above method shock waves a re  not computed separately, but a re  
rather calculated in the form of narrow zones (with a width of several compu- 
tational intervals) with large variable gradients. This method has its variation in 
which the shock wave is not “smeared out. ‘’ 

6.  Difference Methods 

There exists an extensive class of numerical methods of solution of differential 
equations which, by virtue of the method by which they are  obtained, a re  called 
finite-difference o r  simply difference methods. They are  constructed in general 
as follows. Firstly, a computational grid is selected, i. e. , one selects points 
\, tn at which the unknown functions (pz, etc. ) are to be computed. Secondly, the 
derivatives contained in the equations a re  replaced by finite differences. This 

yields a system of algebraic difference equations for the unknown P i ,  etc., in 
which the grid-mesh spacings serve as parameters. And thirdly, if it is necessary, 
an algorithm for solving the algebraic system thus obtained is worked out. 

- -  /5 

All the difference methods a re  approximate, yielding a solution with some 
error. It is of principal importance to know whether this e r ror  can be made as 
small as desired and whether the solution of the difference equations converges to 
the exact solution as the lattice spacings a re  reduced. 
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The theory of difference methods is as yet the theory of linear difference 
methods for solving linear differential equations. We shall show schematically 
how this theory treats the problem of convergence [4, 51. 

It is required to solve the problem 

where L is a linear operator, U is the sought solution and F are known functions 
(initial conditions, etc. ). Problem (6.1) cannot be solved, i. e. , operator L-l  is 
unknown and hence, instead of (6. l), we solve the problem 

where h is some variable (usually the lattice spacing). In order that I j h  + U as  h + o 
one must satisfy the two following conditions. 

Firstly i t  is required that Eq. (6.2) approximate Eq. (6. l), i. e. , 

LhU + L U ;  F h  + F  for h + O ,  

and secondly, that operator Lhl be uniformly bounded over h, i. e., that the dif- 
ference method be, so  to speak, stable. 

In fact, 

-1 Since both the differences in parentheses approach zero a8 h + 0, and operator L 

prove the convergence theorem, since we have not defined the classes of functions 
acted upon by operators, we have not defined the norm used for estimating func- 
tions, etc. 

is 
bounded, then U h - U + o as h + 0. The above delibration obviously does not / 53 - 

We now describe some difference schemes. We return to the system of equa- 
tions in the form of (1.4), written in Lagrangian coordinates.. Due to the specific 
form of the system, we can construct for i t  the following difference scheme. 
Quantities P and E will be calculated at  points sk, t and be denoted P:I E:. Here 
~ ~ + ~ - ' % = h ,  tn+l- tR--c. 

t n + X  I t" + d 2 .  
naturally by the difference scheme (the "cross" sc'tieme): 

n 

Velocity u wil! be calculated at points 'sn + x  - s,: + h/2, 

In this "checked" grid, system of equations (1.4) is replaced 
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n i !  

The fact that Eqs. (6.3) approximate Eqs. (1.4) is obvious. We now consider 
the question of stability of Eqs. (6.3), more precisely, of this system's linear 
model. The latter is obtained by regarding coefficients p 2  in the first and p in 
the third of the equations constant, and by replacing the difference ~p in the second 
equation by p p A p  + P E A  E with constant P The linear system thus ob- 

tained is a linear operator, transforming p:; u 
We denote it by I,;'. We now must estimate the norm of the operator transform- 
'ing the initial conditions (t = 0) into a solution at  some given finite time (for 
example, t = 1). Obviously, it is equal to the norm of operator Ly to power I/c 
and we will have stability if the norm of L:' is smaller than or equal to unity. The 
latter is estimated as the maximum absolute value of the operator's eigenvalues. 
The eigenvalue of operator L:: is 

and P &. 

n +% ' n + t  - , E~ into p " + l ,  u . , E n + r .  

/54 - 

with arbitrary Q 

W e  denote the eigenvalues by h and substitute Eqs. (6.4) into Eqs. (6.3),  
upon linearization of the latter. Dropping the indices of coefficients, we get 

2 - e  
h u o  - 0 ;  

A -1 - 
't Q o + P  
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This system has the nontrivial solution P,S uor cO if its determinant is equal to 
zero, i.e., 

1 -1 - 
.% 

2 i s i n  Q z 
P2 - h 

0 

2 i s i n  '4 2 i s i n  3 
h -  1 2 XP E - 5 

"P h = . h  

0 
2 i a i n  2 

2 
' h  

- 0 .  

whereby it is easily found that one eigenvalue is equal to unity and the two others 
are  found from 

If h = Xo satisfies this equation, then X = I/&, also satisfies it. Also, if  / A O  < 1, 

then I 
x - e i e .  

I > 1. 

Substituting this expression in Eq. (6.5), we have 
Hence, the only suitable case for our purposes is I X I = 1, i. e. , 

A0 

2.T' 2 2 2 Q cuse - 1-  - p c -sin - .  h2 2 

Consequently, I x 
-1 and +l. 

= 1, if the latter expression is real and is contained between 
This yields the stability condition 

- pc < 1. h (6 .6 )  0 

Obviously, the above scheme and its examination have meaning only for 
smooth solutions. To calculate discontinuous solutions the method should be 
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changed to make allowance for relationships on the shock wave. However, 
difference schemes for calculating flows with shock waves may be constructed 
also in a different way. 

7. Smearing Ouiof Shock Waves 

As is known, discontinuous solutions of a system of equations can be regarded 
as the limit of smooth solutions of another, distrubed system, as the disturbing 
variable approaches zero. The system of gasdynamic equations presented in Sec . 1 
makes no dlowance for various dissipative effects - viscosity, heat conduction, 
etc. Hence, the natural way of introducing these disturbances into the system is 
to make an allowance for these effects, the viscosity, for example. But the 
actual physical viscosity is, a s  a rule, extremely small, so that the smooth solu- 
tion obtained by using it can be practically regarded as smooth, i. e. , the width 
of the zone of smearing out of the shock wave is found to be too narrow and anexceed- 
ingly fine lattice spacing is needed for calculations. However, the width of this zone 
can be increased artificially, by taking a sufficiently large viscosity coefficient. 

Formally the introduction of viscosity involves replacing p in the equations by 
U -  p + q ,  where q is the viscosity. Von Neumann suggested that this be done in 
the form 13, 41 

4 - a 2 h 2 p ( g ) 2  
dU for a~ < 0 and q = 0 in the opposite case. Here a is a constant and h is the lattice 

spacing of the difference grid. 

velocity D (the solution to the left and right of the discontinuity is constant). 

/56 - 
Let us see how much viscosity smears out a shock wave moving at constant 

The system of equations has the form 

We seek the solution in the form of a function of 

( 7 . 1 )  

Transforming from s, t to , we get instead of Eqs. (7.1) the system 
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Integration of the first three equations yields 

1 $ + u = c , ;  
- D u + I I = C ~ ;  

I U 2  -DE +C2u +D = ,C3 i 

1 where C1, C and C3 are  constant. 
and ( p , u ,  E ) ~ ,  equal to the values to the left and right of the shock wave, satisfy 

Eqs. (7.2). 

It can be shown that the constants ( p , U ,  E )  
2 

Eliminating p and E from Eqs. (7.2), we get an expression for u ( g  1; inte- 
gration of which from g1 to gr, corresponding to "1 or u 

of the smearing out zone and the solution for e l  'r 
then 

yields the width tl- r' 
4 <  4,. Thus, if p = ( y - l )  p E ,  

i .  e . ,  the wave is smeared out over a given number of lattice spacings of the dif- 
ference grid. 

It is very important that the width of the smearing out zone not depend on the 
specific values of the quantities to the left and right of the shock wave and on the 
latter's velocity. 

A "cross" type system such as  given by Eqs. (6 .3)  can also be constructed - /57 

for the system with viscosity (7. l), replacing by the expression 

This viscosity can manifest itself only in the shock wave region, where its 
role is predominant. It can be said that the shock wave is smeared out because 
the equations in this zone a re  parabolic in nature and the process is qualitatively 
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determined by the equation 

Hence in order to find stability conditions, we restrict ourselves to considera- 
tion, ia difference equations (6 .3)  and (7 .3) ,  of terms corresponding to Eq. (7.4). 
Linearizing the equation, we get instead of Eq. (7.4) 

2 U  @ - - A - - O ,  A - Z P  
d t  as2  

Reverting to the difference analog of the latter equations (in accordance with Eqs. 
(6 .3)  and (7 .3)) ,  we consider, as before, the question of stability using eigen- 
functions. We get for X the expression 

Consequently, I 

or ,  substituting 
condition 

% A  1 
h2 z a  - < -  

au the expression of A and replacing by 1 A u a we get the stability 
h 

8. Implicit Schemes 

The above difference scheme is classified a s  the so-called explicit scheme. 
In it the unknown quantities of the upper (n -I- 1)th layer a re  explicitly expressed in 
terms of quantities of the bottom nth layer. They are  also called local schemes, 
since in using them for calculating the unknown p: + I ,  etc. , one need only know 

the values of p i  , etc., at the closest two or  three points. For this reason all the 

local schemes a re  stable only for a given lattice ratio spacing, since the grid points 
used should cover the dependence domain of the point, where the values of the func- 
tion are calculated. The main advantages of the explicit, local schemes is their 
logical simpTicity and’the small volume of computation formulas of all the schemes. 
However, dh%a does not always result in a minimum volume of computations. For 

- /58 
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example, if  we select a three-dimensional lattice spacing from accuracy considera- 
tions, then the time step required by stability conditions is frequently much smaller 
than accuracy requires. It is hence natural to t ry  to remove the limitations imposed 
on the lattice spacing by stability conditions. This is obtained implicit schemes, 
which shall now be considered [4-71. 

Stability condition (7.5) appears as the result of the local method of replacing 
the differential expression contained in the viscosity with its difference counter- 
part. Hence we now replace 3 contained in q,  using the difference on the upper 
layer. Namely, we write instead of (7.3) the expression 

as 

In this way we get a system of linear algebraic equations for cdtermining all the 
U n+3/2. The characteristic form of this system, consisting in the fact that each 

n+)/, z t 2  n + %  
equation contains only three consecutive values U , , u , makes it 

k - %  k + %  k + %  
possible to use the quite effective sweep method for solving it. The substance of 
this method consists in the following. We write each equation of the system in 
the form 

where A, B, C and D are known quantities and the superscript n + 3/2 has been 
dropped. Let the unknown u , u be related by the expression - /59 

k - 2  k+:: 

Eliminating uk - from Eqs. (8.2) and (8.3), we get 
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Equation (8.4) can be written in the form of (8.3) by setting 

but we take k larger by unity. Thus, if  we write the left boundary condition in 
the form of Eq. (8.3),  then recurrent formulas (8 .5)  can be used for eliminating 
in sequence all the u from the system and obtaining Eq. (8 .3 )  for the extreme 
right values of u. Solving the latter together with the relationship expressing the 
right boundary condition, we get the value of u at the right edge of the computational 
region. Then, since all the xk and yk are known, all the u are  found in sequence 

from Eq. (8 .3) .  

Investigating the difference scheme thus obtained for stability, we will get, 
as in the preceding section, for the eigenvalue A the expression 

(see Eqs. (7.4) and (8. l)), whence 

i. e. , I X I 5 1 for all the cp and, consequently, the second of the stability conditions 
(7.5) can be removed from the above computational scheme. 

One may take another step and remove the first stability condition (6 .6) ,  using 
completely the implicit scheme. For our system (7.1) of equations with viscosity, 
one can suggest the following scheme: 

/GO - 
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- 0; 
I 

The above system of difference equations can also be solved by the sweep 
method, first replacing them with a linear system. If it is assumed that 

'k ' ktg' 'k 
presence of the term E : + ' .  Replacing p-p(p, E )  by an equation of state in the 
form E - ~ ( p , . p ) ,  we express 

,are  the unknowns, then nonlinearity will exist only due to n + l  U n + l  n + I  

as 

The system of equations in (8.6) and (8.7) is linear. Replacing pn + 

with their expressions in terms of un+' (the first and third of equations (8.6) and 
(8.7)), we get difference equations of the form of (8.2),  which can be solved by 
the sweep method. 

and PI+' 
k 

The stability of the above implicit difference scheme for any ratio of lattice 
spacings ,'t and h can be established by the usual method. 

9. _. Two-Dimensional _ _  ~ Schemes 

We now consider methods of calculating two-dimensional gasdynamic problems, 
i. e. , problems with two space variables. Many of the one-dimensional methods 
can be generalized more o r  less obviously to include the two-dimensional case, 
and this is also true of the smearing out of shock waves. We shall not consider 
here the two-dimensional versions of various known schemes, but shall rather 
consider problems typical of two-dimensional (and, in general, of multidimensional) 
problems. 

- /6 1 
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In one-dimensional problems the computational region is always a straight- 
line segment (segment of the x o r  s axis). In two-dimensional problems this re- 
gion may be of many forms. Hence, if we do not wish to consider the quite 
complicated questions of approximation of boundaries and boundary conditions in 
a specified rectangular W e r e n c e  grid, we must carry out calculations in curvi- 
linear coordinates, mapping the computational region onto a rectangle. Here the 
space variables x and y become functions of new coordinates, which are denoted 
by (Y and j3, and of time t if the coordinate system moves. By virtue of the same 
fact, the substitution of variables imposes limitations on the difference grid, i. e., 
functions 1 ( a, p a  t j and y (aa p a  t 1 should not vary sharply, since otherwise the com- 
putational accuracy will suffer. 

specifyingx = x ( a , P , O )  and y-Y(arB,O) one finds x and y from the expressions 
Many problems can be computed in Lagrangian coordinates, i. e., by 

where u and v are components of the velocity vector along x and y, respectively. 
However, unlike the one-dimensional case, two points a l p l  and a2P2, initially 
close to one another and hence having close Lagrangian coordinates, may find 
themselves quite removed after time has elapsed. This, for example, occurs for 
points situated in the vicinity of a contact discontinuity, along which slip of one 
gas layer relative to another is possible. If the irregularity in mass motion re- 
duces to this slip, then the so-called Eulerian-Lagrangian coordinates are satis- 
factory. These are introduced a s  follows. 

Let a be a Lagrangian and j3 be an Eulerian coordinate and equal for sim- 
plicity to y, 

1=x(a,j3,tS); y =  p;  t = t'. 

The region is initially subdivided into layers with a = const and each such layer 
retains its a coordinate in time which is the fact making the coordinate (Y 

Lagrangian. 

We  introduce an expression for finding ' x  a, 13, t 1. We represent in Fig. 6 the 
line a = a. at two close times t and 't + A t .  

during time ~t from point M1 to M2. Vector M1M2 is defined as I( A t , v A t . Since 
points MI and M2 correspond to a. s, during different time instants, 7 A t  is the 

distance between MI and M3. Since the slope of the lines a = a. is defined as 

a it is easy to obtain 
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The gas particle will travel 

ax 
at 

a p  
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or  

i. e., an equation for finding x ( a ,  6 ,  t ' ) .  and consequently also of xa and x 
which All enter the coefficients of the system of equations after substitution of 
variables. 

The above example shows that frequently the question of selecting a coordinate 
system is far from being the most trivial of all the questions in constructing a 
numerical method. 

Figure 6. 

s 
Figure 7. 

Below we shall present two methods in which the problem of the difference 
grid is partially o r  totally removed, while the advantages of the Lagrangian 
coordinate system are  retained. 

We write the system of gasdynamics equations in the form [ 11 

where - = - a +u - a 
dt at ax +'G is a derivative along the particle path. 
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Harlow 1 SI suggested the following original computational method. The space 
to be computed is subdivided in the x, y plane by a rectangular mesh (Fig. 7). 
Some (usually small) number of gas particles is contained in each mesh cell. 
The mass of each particle is prescribed. Density P in a given cell is defined as 
the ratio of the total mass of particles of this cell to the volume (area) of the cell. 
In addition, velocities u and v and the internal energy E are  defined for each cell. 
Since the law of conservation of mass is satisfied automatically, the first of 
equations (9.1) is not used. Using tke ZeEaining three of equations ( 9.1) we 
naturally find new (not final) values u, u , E .  For example, ?!! is replaced by 

is replaced by 2- , where A ~ P  is the difference in the p of right and 
feft cells and A x  is the mesh spacing. The remaining terms of Eqs. (9.1) are 

treated similarly. From the u I u I E obtained we calculate the total momentum 

M;, M v" of the cell (M is the cell mass) and the total energy M ;+ 
new coordinates X +;A t , y + ;A t of each particle are  found. If then the particle 
moves into the neighboring cell, it takes with it its portion of mass, momentum 
and energy. Then the mass, momentum and total energy of each cell are recalcu- 
lated and these are  used for obtaining new, final values of p, U, u and e .  

A P  dt 
and i i i  

A t  ax 2 A X  

" - L .  

. Then i i i 2 + 5 2 )  

We have described the substance of Harlow's method without dwelling on its 
variations (for example, for the case of a mixture of two gases). Results obtained 
by this method show that i t  is universal and reliable in spite of the fact that it does 
not have a rigorous theoretical basis. 

In closing we consider still another method of particles [91. We shall dispense 
with any regular computational grid and assume that the values of unknown functions 
p I  u , u ,  s are calculated at some points x, t, i. e. , gas particles, located at the 
given time t arbitrarily in the x, y plane. In order to obtain a method for calcu- 
lating the x, t, p, Y a V I  E of each particle during the next time instant t + A t ,  we 
proceed a s  follows. Since A t  is small, the coefficients of the system of equations 
for this time interval will change little and in the vicinity of the given particle 
they can be regarded as  constant. Consequently, to obtain an approximate solution 
the system can be replaced by a linear system. For a linear hyperbolic system 
with constant coefficients one may write formulas expressing the values of 
functions, i. e. , the solutions at time t + A t  in terms of integrals of these functions 
at time t (similar to the Poisson formula for the wave equation). Using adjacent 
(at the given time) points (''particles") as  reference points for interpolation of the 
integrands Y , u I  pa s1 one may obtain the given quadrature formulas. The latter 
are the difference formulas needed by us, yielding the values at  t +A t . The new 
values of coordinates of the particles are  obtained as I + l I A t r  y + ubt.  

A problem of some importance in this method is that of finding a good means 
of selecting "adjacent" points: what points should be used for computing the given 
'point and what points should not be used. But this question is not discussed here. 
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THE flDECOMPOSITIONff METHOD IN SOLVING PROBLEMS 
OF MATHEMATICAL PHYSICS 

G.I. Marchuk 

A difference scheme must satisfy not only the ordinary approximation and 
stability requirements, but a number of additional requirements such as economy, 
high accuracy, divergence, etc. Hence construction of difference schemes on the 
basis of ordinary homogeneous approximations has involved various difficulties 
which have been resolved by using the method of small steps, utilizing inhomo- 
geneous approximation. 

/6 

The first results in this direction were obtained by Peaceman, Rachford and 
Dougas 1-3 I .  Subsequently these results were developed and enlarged upon in 
depth in r4-81. All this work is based on the Peaceman, Rachford and Douglas 
schemes (alternating direction methods (ADM) and the Douglas-Rachford stabi- 
lizing correction method). 
equation either at each small step (alternating direction method), o r  at the first 
small step with subsequent stability correction (stabilizing correction method). 

A large number of studies by American workers is concerned with optimal 
selection of parameters of iteration schemes [ 9-11] and with obtaining difference 
schemes of a higher order of accuracy [ 121 

These methods require approximation of the differential 

Investigations by Soviet workers a re  based on decomposition of complex 
operators into simpler ones. Under this approach integration of a given equation 
reduces to successive integration of equations with a simpler structure. Here the 
small-steps schemes need satisfy the approximation and stability conditions only 
in the final result. This allows for flexible construction of schemes for substan- 
tially all the principal equations of mathematical physics. 

One of the first works in this direction was  devoted to application of the de- / 6  
composition method to problems of multi-dimensional hydrodynamics, in which 
explicit decomposition schemes were used. 

Yanenko [141 suggested a method of small steps based on breaking up of the 
multidimensional heat conduction equation into a sequence of elementary one- 
dimensional equations. The method of small steps was further developed 
in [ 15-171. 

A sequence of studies was carried out by Samarskiy in conjunction with investi- 
gation of locally one-dimensional schemes, which is closely related to the decom- 
position method. He also considered schemes of higher order of accuracy for heat 
conduction equations. Special methods of a priori estimates were developed by him 
for the study of convergence [ 18-211. 

- 
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An algorithm for constructing an implicit scheme of difference equations with 
a factored matrix was given in [221. Yanenko 1231 pointed out a method for 
augmenting the local difference operator to a factored operator (approximate 
factoring of the difference operator). 

D'yakonov [24-261 formulated a method for constructing schemes with de- 
composable (factored) upper operator for parabolic and hyperbolic type equa- 
tions. 

Decomposition methods for approximate integration of irregular systems in 
dynamic meteorology (weather forecasting problems) were suggested in [ 27-29] . 

Decomposition methods were found quite effective in solving multi-dimensional 
kinetic Boltzmann equations [30-311, equations of the theory of elasticity [32- 
341, etc. 

It was found possible to treat the decomposition method as a method of weak 
approximation, which allowed one to use it for investigation of the Cauchy problem 
for correctness. 

Experience accumulated in solving complex problems of mathematical physics 
by decomposition methods shows that they are  effective and universal. Various 
aspects of the decomposition method are  presented below. 

1. Methods of Decomposition . . - ... of Steady-State Problems ~- -- - 

We consider the steady-state problem 

where A is some operator (we assume for simplicity that it is linear and symmetri- 
tal), f is a known function, and 'p is the sought solution. It is assumed that the 
domains of definition of given functions f andcp a re  in real vector space with a 
scalar product and corresponding norm. 

/68 - 

We construct the relaxation process 

where -z is an arbitrary relaxation variable, The iteration process is now written 
in the. form 

It is easy to see that if iteration (1.3) converges, then the limiting element 'pa 
is a solution of problem (1.1). The identity transform of Eqs. (1.2) and (1.3) is 
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where T is an operator with step 

In order for iteration (1.2) to converge it suffices that the norm of operator T 
satisfy the condition 

In many cases i t  is possible to select T so as to obtain the optimal convergence of 
the process. 

We now consider the more general iteration process 

i + l  "p i j  
B' + A Q  I f r  (1.4) 

where B as yet is m arbitrary operator. E we define it as B =mi, then by means 
of a single iteration we get the exact solution of the problem 

However, determination of A-l  is no easier than solution of Eq. (1. l), meaning 
that this generality in constructing the iteration process is useless here. 

We consider a particular case of operator B 

where Aa are some arbitrary operators of a structure simpler than A ,  while T~ 
are  arbitrary constants. Then iteration process (1.4) takes the form 
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we arrive at a special form of the universal algorithm 

n j + r  i n 

u-1 @+:A,)' T - Q  + u- Z: 1 A,.s i ' - f .  (1.6) 

We note that iteration process (1.6) has n + 1 arbitrary constants 
which can be expressed in such a manner that the iteration process will converge 
most rapidly. System of equations (1.6) was regarded by Douglas and Gunn, 
Samarskiy, D'yakonov, Yanenko and others as  a scheme for generating various 
methods of implementation of the decomposition method. It was shown by a num- 
ber of studies that all the known decomposition methods possessing the property 
of total approximation reduce to schemes (1.5) or  (1.6).  And if  this is so, then 
the question arises of constructing a scheme for implementing the iteration proc- 
ess. In particular, we  will have for scheme ( 1.5) 

T2' -B 711. 7, 

1 . . . . . . . . . . . . . .  

where 

is the discrepancy of the iteration process. 

2. Methods of Separation of Unsteady Problems 

We consider the unsteady problem 

whose solution is now sought in  the form 

f + 1  i 
Q - Q  f f + k  +.AQ - f  

't 

(1.7) 
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This is an explicit scheme of calculation with a first-order approximation and, as 
a rule, with large stability limitation. hstead of Eq. (2.1) let us consider the 
implicit scheme 

where % = A t ,  while Aa satisfies the condition 

In the particular case we have 

where 

This is a scheme of a general purpose algorithm, the implementation of whichis again 
given by a system of equations such as (  1.7). It can be shown that difference 
scheme (2.2) has a second order of accuracy with respect to T on smooth 
functions. In fact, let us apply the operators in (2.2). This yields 

where 

Equation (2.3) is written in the form 
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Since expression 

is bounded as 't + 0, we have proved our assertion. 

selves to the case where operators A and A a are  commutative and have a positive 
spectrum and a complete system of eigenfmctions. The solution of the problem is 
sought in the form 

Let us now prove the stability of this universal algorithm. We restrict our- 

where \y ( 
a 

are  the eigenfunctions of the homogeneous problems 

Substitution of Eq. (2.4) into Eq. (2 .2)  for fj+1'2 = 0 yields 

where 

Equation (2.5) is solved for 

where 

(2.4) 
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It is seen from Eq. (2 .6)  that when 
X 2 0. Accordingly, algorithm (2.2) is stable. 

> 0 we always have k-< 1 , provided that 

3. The "Predictor-Corrector" Method - for -~ Solvkg 
Unsteadv P r o 6 l e m s  

We consider the equation 

The entire interval 0 5 t T is subdivided into partial intervals A t  - T and the 
solution of the problem at each of these intervals is to be found in two stages. 
First  we find an approximate solution of the problem at half the interval using the 
scheme 

i + %  i i +% 
( E + S A , ) V '  = Q  +:f 

a 9 1  
(3.1) 

After the solution of this problem is obtained, we shall seek the solution for 
Q using the corrector i+ 1 

Here, as before, 

In the simplest case, when A ,=Aa ,  we get 

1 i+ X U 

a= 1 (3 .3)  

We now show that scheme (3.3) is of the second order of accuracy with 

respect to 't. In fact, multiplying the second of equations (3.3) by Ab', and then 

/72 . 

;t (E+;*,) , we get 
by a=i 
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Then the equation thus obtained is multiplied by A and 

is eliminated using the first of equations ( 1.5). This yields 

or 

where 

The assertion that the predictor-corrector scheme (3 .3)  has the second order 
of accuracy on smooth solutions is thus proved. 

Equations (3.1) and (3 .2)  are  implemented according to the scheme: 

. . . . . . . . . . . . . . . .  
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It is easy to see that the predictor-corrector scheme is not equivalent to the uni- 
versal algorithm scheme, but is close to it. 

In form (3.3) the predictor-corrector method is satisfactorily integrated. 
In fact, the first  equation provides for a large stability margin, which is then 
lost in accuracy correction. It should be noted that the predictor-corrector method 
satisifes the conservation laws (the system is divergent), while other methods may 
be also nondivergent . 

The predictor-corrector method can be used also €or solving steady problems 
in the following form: 

1 i j + -  

. . . . . . . . . . . . . . .  
(7 

- f > *  

Here we again have n operators Aa, and n 3.1 parameters T 
which are selected from the condition of process optimization. 

, T ~ ,  ..., T ~ ,  T, 

4. Operators With Arbitrary Structure 

In solving equations of mechanics of continuous media one almost always 
has to deal with operators which have imaginary values as spectral points, which 
makes the application of general decomposition methods impossible. This cor- 
responds to the wave nature of ;the solutions. It is true that equations of hyperbolic, 
elliptical or  parabolic type serve as  individual elements of the algorithm, and 
methods for decomposing these types of equations have already been extensively 
studied by Yanenko, Samarskiy, D'yakonov, and others. In addition, problems 
of mechanics of continuous media frequently do not belong to the class of Cauchy- 
Kovalevskaya problems, 

As an illustration we consider the solution of the Cauchy problem 
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or  

with applicable initial 

and boundary conditions. We shall seek an approximate solution using difference 
schemes satisfying the following requirements: 1) second order of accuracy with 
respect to all the variables; 2) simplicity of .implementation; 3) divergence. 

We shall show that for given pi = const one such scheme will be as follows: 

which is implemented according to the scheme 

where 

Let 

i i i k , a ,  + i k , a ,  + i k , a ,  
c k , k , k ,  = e 

Substitution of Eq. (4.2) into Eq. (4.1) yields 

(4.2) 

(4.3) 
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where 

We calculate 

where 

We now find the minimum of function Q(XlrX2,X+y1, y2, y3).  
symmetrical relative to xl, x2, x3 and yl, y2, y3, then an absolute extremum of 
the function is possible only when 

Since function P is 

which yields 

From which, using Eq. (4.3),  we get 

F < 3  

as the stability region. In the case of two variables (x, y) scheme (4.1) has abso- 
lute stability for any p. 

Now it is necessary to solve the problem 

where p may change sign. Equation (4.4) are  written in the form 
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which is then rewritten as 

together with the boundary conditions 

Equation (4.6) is solved by the sweep method. It can be shown that computations 
using sweep formulas will be stable. 

5. Solving . . Problems of Dynamic Meteorology 

The main problem of dynamic meteorology is the system of equations 

which should be supplemented by appropriate boundary conditions. 

How can this complicated system of equations be simplified using the 
previously discussed ideas ? 

Frequently one has to deal with extensively studied problems of parabolic, 
elliptical o r  hyperbolic type. In consideration of our problem the mathematical 
aspect ties in quite satisfactorily with the physical aspect. We shall attempt to 
show how this system should be decomposed. For this one should imagine a 
physical process which consists in the following: there exists, let  us say, a 

ment in general moves along a specific path, but during its entire motion it 
adapts itself to laws of conservation of energy, momentum and mass. 
particle undergoes an infinitesimal displacement along the path then dynamic 
mismatch of the fields occurs. This mismatch is eliminated by the fact that, 
setting into operation the conservation laws, we shall attempt to distribute all 
the discrepancies in a special way over the field and then again to match the 
latter at some stage, using wave disturbances (which are  permitted by our system 
of equations). After the fields a re  rematched and corrected values of fields of 
hydrodynamic elements are obtained, we can again move along the path and again 
match the fields. 

volume element of a liquid or a gas, which is to be tracked. This volume ele- /77 

If a 

We thus have two effects which must be considered: transfer of the substance 
along a path (which is the more substantial factor) and dynamic matching. Had 
there additionally existed eddy exchange, we would add here a third step: first our 
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particles would be moved along their path, then eddy exchange would be %witched 
on" and this will be followed by dynamic matching. Once this is understood, it 
becomes clear how the starting system is to be decomposed. We write the two 
systems into which it is decomposed. Let A t  = 7 be a time interval from time t. to 

J 
Starting with time t. we begin moving the particles along their path, i. e. , 

tj+l* 1 
solving the system 

i for t - t . 

Upon finding the solution of the above expression at time tj+l, we solve the problem 

of dynamic matching of the fields: 

Then Eq. (5.1) at t. is solved in the form 
J +I 

It is seen that the weather forecasting problem has been decomposed into two 
simple problems, which in their turn can be decomposed further. 
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The solution of Eqs. (5.2) was already discussed. Let us now examine the 
solution of Eqs. (5.3),  for which we write them in the difference form 

where superscripts (2) are omitted for simplicity. The notation used here is 

This system yields 

-1 
Y a - Y  

where x -(1.r".3 
functions with the exception of '9 and using the equation 

is a dimensionless parameter. Eliminating all the 

we arrive at an expression for y j + '  
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where 

8 - const, f '  = F ( u  i, v i y  W ' ,  8' 1. 

Equation (5.4) can be decomposed further. 

6. Methods of Steadying 

We shall prove, without reference to the hydrodynamic statement, a number 
of assertions which can be used for finding a solution to the problem when the 
operator of the steady-state problem is not positively defined. 

Let it be required to solve the problem 

where A is not a positive definite operator. Instead of this problem we consider 
the unsteady problem 

9 + a y  I f .  

d t  

It is now asserted that the solution of Eq. (6 .1)  is the limit of some function 

We shall prove this on the assumption that the solution of Eq. (6 .1)  is a 
bounded function. 
the solution is always bounded; if however, there exists a negative root A < 0, this 
will result in a solution increasing exponentially with time. This will be discussed 

T 
below. Applying the operator 1 f d t  to Eq. (6. l), we have 

- /80 
It is known that, if all the roots of an equation are  imaginary, 

T o  

Integration yields 
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If solution y of unsteady problem (6.1) belongs to the class of bounded functions, 
then it is possible to find a T such that starting with i t  

and, in fact, we get uniform convergence, irrespective of x, y, z. 

The solution of unsteady problems is obtained with sufficiently high accuracy, 
since one can use for them the universal algorithm and reduce the solution of this 
problem to sequential solution of elementary one-dimensional problems, which was 
discussed previously. 

We considered a quite simple problem of steadying and found in this case that 
its convergence to the solution of the steady-state problem was of order 1/T. 
We now wish to know whether it is possible to construct methods so that, having 
quite arbitrary solutions and applying to them some more complex operators, the 
convergence to the steady problem is of order l/Tn. 

We consider one particular case. Let it be required to solve the problem 

Instead of it we shall consider 

Since t is a formal variable, in solving this problem we select the initial conditions 
as follows: 

If the solution of Eq. ( 6 . 2 )  is bounded, then 

7 'I t * - l  ni '9- l i m  'p = l im f d t ,  f d t ,  .. J y d t , ,  
T+- I' T- ."Tn 0 0 0 

and in the uniform metric 
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In fact, let us apply operator 

T c1 cn- 1 

E- d t ,  J d t ,  . O .  f d t ,  
T n  a 0 0 

to Eq. (6.2). A s  a result, with consideration of initial conditions, we get 

since y (TI belongs to the class of bounded functions. 

This means that if the problem converges slowly, other steadying operators 
should be used. This increases the order of equations for t. 

Up to now we have considered methods for solving equations such as (6.1) by the 
decomposition method. In some cases the decomposition of wave equations has 
been considered (Samarskiy, D'yakonov, Konovalov). Wave equations correspond 
to the case when A is an elliptical Laplace operator and n = 2. In the particular 
case of a wave equation, when instead of problem 

we consider 

we have 

Consequently, for function 

2 the convergence is of order 1/T 
first by Saul'yev, who obtained convergence of order UT. 

Steadying of such an equation was considered 

Problems with positive .definite operators are the simplest. If the operator's 
spectrum is imaginary, then the problems become more complicated, but here one 
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may use all the methods utilized for positively defined operators. If, however, the 
operator's spectrum contains one o r  Several negative numbers, this results in the 
appearance of harmonics increasing with time. Here it is no longer possible to 
steady the problem in principle, even when using the previously described func- 
tionals, since it is assumed everywhere that the solutions are bounded. In this 
case it is necessary to know how to isolate these harmonics. If this could be done, 
then the separation theory could be used for solving a wider class of problems. 
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THE USE OF THE METHOD OF THE SMALL PARAMETERFOR 
NUMERICAL SOLUTION OF EQUATIONS OF 

MATHEMATICAL PHYSICS 

A. A. Dorodnitsyn 

1. The advent of electronic computers has increased by a factor of hundreds of /8i 
thousands and now of tens of millions the computational capabilities of mankind. 
This has made a substantial change in the approach to solving problems of mathe- 
matical physics. While during the "pre-computer" e ra  investigators attempted 
to move as far as possible in analytic solution of the problem, thus leaving a 
minimum of computational work, the appearance of high-speed electronic com- 
puters resulted in an opposite trend - to "arithmetize" the problem as fast a s  
possible, i. e. , to write it (as  a rule, approximately) in a form in which the 
subsequent solution would be reduced to arithmetic operations, i. e., could be 
carried out by computer. 

~ 

A s  a result the powerful analytic tools which were developed during the pre- 
computer era were to some extent temporarily put aside, if not forgotten. 

However, in spite of the high speed at  which computer technology is being 
refined, the complexity of problems generated by modern physics and technology 
increases faster than the capability of computers, and the direct lTarithmetization'' 
approach frequently results in computations so complex that they are beyond the 
capability of even the most modern machines. 
the store of knowledge accumulated by "ana l~ t ic '~  mathematics and to see whether 
one can find there effective methods which, together with machine computations, 
would make possible easier solution of complex problems of mathematical 
physics. 

It is therefore natural to turn to 

The small-parameter method has been quite effective in many analytical 
studies. This method substantially (although not explicitly) underlies all the 
methods of successive approximation, but is most clearly expressed in 
perturbation theory. 

As to the "small parameter" proper, in some problems it has a direct 
physical meaning, while in others it is introduced artificially a s  a certain formal 
parameter. In the latter case the starting, specified problem is obtained for some 
specific value (usually equal to unity, i. e. , not small) value of the parameter. 

2. The introduction to the small-parameter problem is a rather standard 
operation. 

Let us have a starting equation, which is written in the general operator form 
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where 2 is the radius vector of points in the domain where the solution is sought, 
and i! is the sought vector function (the dimensions of 2 and $, obviously, can be 
entirely different). 

From a certain set of considerations we find the equation 

the solution of which, we hope, is close to the solution of the starting equation. 
Writing the starting equation in the form 

where 

we construct the more general equation 

and solve it by one method o r  another. Solution 3 of this latter equation is a 
function of E 

and the solution of starting equation (2.1) is obtained with E = 1. The introduction 
of the small parameter E did not simplify the problem, but now we  are  able to 
study the solution of Eq. (2.2) as a function of this parameter. The idea of intro- 
ducing the parameter consists in the fact that i t  may be simpler to clarify the 
dependence of the solution on E ,  then to immediately find Z as a function of i? in 
the starting equation. 

It is usually not difficult to show that if ( 2, E j  is a continuous, differentiable 

- /87 

(and even analytical in some range o,f values of E) function of E. 

possible to consider a derivative of u with respect to E: 

This makes it 

The equation will be linear in 3 

(>+ $);. y ( x ,  + +  u )  I O .  
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If the operator which is the inverse of operator 

a f  d f  

(we denote it by 4 + ) is easily arithmetized, then the problem can be E: dJ1 

arithmetized easily by using a method, let us say, similar to the Euler method in 
ordinary differential equations. We have 

+ - B  + +  + - 9  

U(X,  E + A E )  - U(X,  E) + A E  * U  (x, E)  

and ;f is thus found step by step up to the value of e = 1. Naturally, this can be 
done in the case when as a function of E is a continuous differentiable function 
in the interval 0 - < E 5 1. 

However, in general, the finding of operator + E is not a simple 1j-l 
task, although for a sufficiently good direct operator it can be approximately re- 
duced to an algebraic linear system of equations. But, since the direct operator 
~ Q o  ay 
-T + E -  is a function of e and ;, in general this linear system has to be solved 
au ai! 
again at each step in E .  The method will be effective when the inverse operator 
is easily calculated, but this is not a frequent occurrence. 

- /88 

It is much simpler to subdivide the starting direct operator into the sum ao+'p 

in such a manner that can be easily found. For example, if a0(?, t )  is 

linear in u', then operator r21-I does not depend on t and E ,  and can be precal- 

culated. 

If, as in the ordinary perturbation theory, the solution is sought as  a power 
series in S, then to calculate each coefficient one needs precisely only one operator 

82 



since, if we set 

+ 
we get for V,(X)  the expression 

For computational purposes a series expansion in E is inconvenient for two 
reasons. The right-hand sides of Eq. (2 .3)  for any complex nonlinear equations 
grow very rapidly, and this requires complex analytical transformations before 
making the expansion. When a large number of terms of a series is to be calcu- 
lated, the machine memory will be unduly loaded. Here it is more expedient to 
use the method of successive approximations 

the effectiveness of which will depend on the simplicity of solving equation 

3. The method of power series expansion in E has the substantial shortcoming 
that the convergence of the series is determined by the analyticity of the solution 
in the range 0 5 EL 1 of interest, but depends on the behavior of the function in the 
circle I E I f  1. Thus, if function f (2 ,  E )  has a singularity for some complex o r  
negative E whose absolute value is smaller than unity, then the series will diverge 
for E = 1. 

- /89 

The situation may be somewhat better for the method of successive approxi- 
mations, but this method also may diverge even if the function remains analytical 
in the interval 0 < E 5 1 
with respect to E, which would permit circumvention of the "parasitic" singular 
points. 

Hence i t  becomes attractive to employ analytical continuation 

The simplest approach in this direction is writing Eq. (2.1)  in the form 
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Ill 

where a is some constant. Obviously, when E = 1 Eq. (3.1) coincides with 
Eq. (2.1). 

Let us find the relationship between parameters e and E (Eq. (2.2)).  Since 

~ ( 2 , ; )  = a o ( z J ; )  + c p ( ? , ; ) ,  Eq. (3.1)canberewrittenintheform 

o r  

+ +  + +  
@&, lJ) + - . ; p ( x , u )  t 0.  

1- E 1( 1- a) 

Equating (3.2) and (2.2),  we get 

1 
E -  

l - E l ( l-a) 

(3.2) 

(3 .3)  

Function (3 .3)  maps a unit radius circle in the e l  plane into a circle with 
radius 1/(2 - a )  with center at point r -  1 * l-5- , y = 0 (Fig. 1). Thus, i f  the 

2 l - - a  1 
2 

solution of Eq. (2 .2)  has no singularities inside a circle whose center is at  point 
( l /Z ,  0 )  and whose radius is greater than 1/2 + 8, where 8 is a positive integer as 
small as  desired, then for a sufficiently small a > 0 the solution of Eq. (3 .1)  will 
be analytical in E when E 1 ,< 1. 

- /90 

A more general case of analytical 
extension can be obtained by replacing 
the constant (Y with one which is a Circle in the 

E ,  plane function of E ~ .  Then 

Circle in the a ( E l  ) E  1 

1- E 1 [ 1 - -  a ( E l ) ]  
E -  

It is always possible to find a function 
f ( E  J which maps a unit-radius circle of 
the E lplane into as  narrow a region as  
desired, which surrounds segment 0 5  ES 1 , 
and in addition such that the 0 of plane E 

is mapped into the 0 of the E plane and 
E 1= 1 is mapped into E = 1 (Fig. 2) .  Figure 1. 
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Circle in the 

Figure 2 .  

Upon finding a ( E 1  ) from 

i. e., 

we get the following result. It is always possible to find the solution of equation 

as a power series in E~ if the solution of Eq. (2.2) is analytical in E in the entire 
range 0 5 ~ 5 1 .  

Finally we 3ote that in some cases it is more expedient to specify an o! which 
is a function of x . 
of singular points of Eq. (2.1). However, this is not considered in detail here, 
but instead we examine an example. 

This makes i t  possible to avoid undue difficulties in the vicinity 

4. Application of the above method is now described by several examples. 
These examples a re  naturally illustrational, i. e. , they are sufficiently simple 
and easily understood. 

A. W e  consider the classical example of a nonlinear problem for the Laplace 
equation - the problem of conformal mapping of some region into a unit-radius 
cir  cle. 

In the plane z - re i e  let there be given a domain D whose boundary is specified - /91 
as 

I n r  - u ( e ) .  

We assume that u ( e )  is a single-value differentiable function. 
origin of plane z lie inside D. We map D into a unit circle of the $ana 
5 - P ci" in such manner that the coordinate origin z = 0 is transformed to the 
center of the circle 5 = 0, and we assume for definiteness that (&/dy) 

and positive. 

Let the coordinate 

is real 
5 - 0  

We shall solve the more general problem for the domain D ( E )  whose boundary 
is given by 

Inr - E;u(e) .  (4.1) 
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The function mapping D(E) into a unit - radius circle depends on 5 and E:  

Z = Z ( C r  e ) ,  

wherein, for e = 0, 

The function 

~ ( 5 ,  E) I lnr + i e - 'F + i e 

is an analytic function of 5 in the circle I5 I < 1 with a singular (logarithmic) 
point at the coordinate origin, but 0 ( <  , E) - In5  is analytical in the entire circle. 
Hence, also the function 

is analytical inside circle I 
more complete form as 

I < 1. Boundary condition (4.1) may be written in the 

whence 

or, using the notation 

we get 

Equation (4.3) is already a linear condition for the boundary values of function 

E ,  and solving this problem, let us say, by the Euler method, we would have been 
forced to seek a solution of a boundary value problem with different coefficients at  
each 'step in E .  To avoid this, we do the following. Equation (4.2) is differentiated 
with respect to v: 

(<, E). However, the coefficients in this condition themselves a re  functions of 

/@ 
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i.e., 

and condition (4.3) can be rewritten in the form 

o r  

Noting that 

and also 

we have 

(4.4) 

and condition (4.4) can thus be written in the form 
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We have thus obtained for the function 

which is analytic inside circle 16 I < 1, the classical Dirichlet problem. 
function is found explicity in terms of the Poisson integral. We thus always 
carry out transformation from E to E+AE by the same computational procedure, 
which reduces, when using finite differences, to multiplying a matrix (which is 
always the same for any u ( 0  1) by a vector. 

This 

B. Let it be required to find the solution of the equation 

A V  -c(x,Y)~? = f ( x , y ) ,  C ( X , y ) > O  (4.5) 

in a unit-radius circle with boundary conditions cp = 0 at the circumference x2 + 

y = 1. Writing the equation in the more general form 2 

we get the usual method of perturbation theory. 

All the singular (with respect to E )  points of the solution of this equation 
a re  eigenvalues of the equation 

All the eigenvalues are negative. Thus, the "success" in using the ordinary 
perturbation theory depends on whether the absolute value of the first  eigenvalue 
of Eq. (4.6) is smaller or greater than unity. If coefficient c(x, y) is sufficiently 
large, then eigenvalue A lean be as small as desired, and hence perturbation 
theory is not suitable for solving the starting equation (4.5). But, by introducing 
the constant a, i. e. , considering the equation 

/9: 

the solution can be found up to E = I ,  as long as we assume that 
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C. We consider the biharmonic equation 

with different boundary conditions in some closed, bounded region. Its solution 
is particularly simple with boundary conditions of the form - /94 

~9 - 0; A C ~  - 0 on r (boundary of domain) 

Then the solution reduces to successive solution of the Possion equations 
converges for 

A U  - f (x ,y ) ,  o = 0 on r ;  
ACP w 8  9 - 0  on r.  

But now the problem of a rigidly fastened plate, for which the boundary conditions 
have the form 

does not decompose into two 2nd-order problems. 

Taking, instead of the second condition in (4.7), the condition 

O + E  a - - - - w  - 0  on r ,  ( d d l :  ) 
we can seek a solution in the form of a series in E :  

m ea 
L o t  c w n s n ;  (9 '  c cpnsn.  

0 0 

Here, for wn and 'Pn we obtain a recurrent system of decomposing equations 
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As was shown by B. Pal'tsev, series (4.8) converge provided that 

where D is the area of the domain and K is some constant depending on the do- 
main's form (it is assumed that the domain's boundary is sufficiently smooth). 
In order to make this result more graphic, we consider the quite simple case of 
a one -dimensional "biharmonic ' ' equation 

(4.9) 

/95 - with the boundary conditions 

(4.10) 
4 0 )  = 0, 

% = a  

Had, for x = a, the value of w been specified instead of the condition 3 ax 
then the fourth-order system (4.9) would have separated into two 2nd-order 
systems. Under conditions (4.10) this separation does not occur and we must di- 
rectly solve a fourth-order system. W e  now replace the last of conditions (4.10) 
with the more general condition 

0, 

w + ~ a - - m  - 0 ,  ( 2  ) for X = a : (4.11) 

which reverts to that of (4.10) for E = 1 .  

Since the study of system (4.9) with conditions (4.11) is elementary, we can 
easily observe the dependence of this solution on E and the conditions under which 
the power series in E for functions w and 'Q converges for E = 1. 

From the first of equations (4.9) we get 

where QO ( X  ) is a particular solution, let us say such that n,(O)=O and Qi (0) 0 

(i. e. , Q~ (x) = 1 dsl f(s3 d s , ) .  We made use here of the condition w ( 0 )  = 0. Now, 
0 0  

from the second equation we have 

x s  
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%3 cp(x) = Q,(X)  + c 1 6  - + C 2 % ,  

the term Q,, in the expression for w.  Constants c1 and c2 will be found from con- 
dition (4.11) and the condition (p ( a  ) = 0 

a 3  @ , ( a )  + c l a  + c 2 a  = 0; 

Elementary calculations yield 

Thus, the solution of system of equations (4.9) can be expanded in a power series 
in E provided that < 1 ; consequently, when 

6 o < u < -  a 

the series converges for E = 1 and yields the solution of the starting problem. 
This result, as is seen, is qualitatively the same as for the general biharmonic 
equation. Constant K is here determined exactly (K = 6). 

D. Finally we consider the more complicated case of the flow of a viscous 
fluid. The equation of a viscous incompressible fluid can be reduced to a single 
fourth-order equation 

(4.12) 

The boundary conditions at the solid walls have the form 
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a y  \y = const; - LO. 
a n  

One of the important problems in the theory, of viscous fluids is the flow past a 
semi-infinite plate. Here the boundary conditions are written in the form 

yJ(x ,O)=O;  a2yr - = o  ( y = d ,  x < O ) ;  9 = 0  ( y - 0 ,  X > O ) ;  

dY aY 

In Oseen's approximate statement, in which it is assumed that V differs little 
from values for a uniform flow ( y = y ) , Eq. (4.12) is replaced by the expression 

with the same boundary conditions. 

If we introduce the vorticity w = A V .  then Eq. (4.12) and the boundary conditions 
can be rewritten in the form 

These equations can be "separated" in the ordinary manner by writing condition 
x > o in the form 

However, in this case the domain is infinite, function v' is not bounded, and the 
fact that the asymptotic behavior of function w at  infinity is not taken into account 
will result in divergence of the series in E .  But the asymptotic of the solution a s  

x +- isknown: w - -  Hence we write the "generalized" equation in the form fi' 
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The expansion of functions w and ~y in a series in E is 

00 m 

0 -  Z W , , . E n ;  y y ' y + z  Y n ' E n >  
1 1 

and for on and Y,  we get the recurrent formulas 

do 
d x  

Awn-2-" -0; W,(X ,O)  - 0  ( x  < 0 ) ;  

(1 > O ) ;  o,(x, 0) - - a ___ 'yn-1 + w  "-1 ' 
fi dY 

A y , = w , ;  Y , , ( I , o )  = 0. 

(w  and grad y n  tend to zero at  infinity). n 
First we find w1 and y I .  

These equations are  solved simply. 

For w we get the boundary condition 1 

( x  > 0 ) ;  q x ,  0) " 0 (I < 0 ) ;  ol(x, 0)  = __ a 
fi 

w 1  - 0  for I 2 + y 2  -. DO. 

It is easy to check by direct substitution that 

o l  = 

(r and v are  polar coordinates). 
vert to the parabolic coordinates 

In order to find y it is more convenient to con- 

in which the equation for  Y~ is written in the form 

with the conditions 
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Setting 

we get 

whence 

-2'1' r p " =  4 a e  , 

Do - 2s' d s  + (1 - e-2q] 
rp = r e 

'1 

and 

(all the boundary conditions a re  incorporated here). Let us now find - 

The conversion formulas 

yield 

is a constant. Hence we get for w a boundary con- 
2 We thus see that 1 ai ly=o 

dition of the same form as for wl, but with a different multiplier 
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whence 

and further 

In general, 

Thus, the power series in E converges i f  

For  convergence of the series when E = 1 it suffices that 

d f l  

The summation of the series is also found in an elementary manner: 
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For E = 1 

i. e. , the solution, naturally, does not depend on the selection of cy and is the 
solution of the starting problem. 

We note that in the above examples there exists an "optimal" value of cy 

(a- 

consists of one nonzero term. Obviously, this cannot happen in the general case, 
but it may be expected that the convergence will be optimal for some value of a. 

in the problem just considered) when the series simply breaks off and 

We note in conclusion that the examined examples show the advantage of 
introducing the small parameter - that calculation of all the approximations is 
performed by the "standard method. l 1  In using finite differences it is necessary 
to solve in each approximation a system of linear equations with the same matrix 
(only the right-hand sides change); thus the relatively cumbersome problem of 
computing the inverse matrix is solved only once and the computations at all the 
subsequent approximations reduce simply to multiplying this matrix by a vector. 
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NUMERICAL METHODS IN SOLVING STEADY-STATE 
EQUATIONS OF GASDYNAMICS 

0. M. Belotserkovskiy 

/ lo1 In prc lems for solution on high-speed electronic computers one most A,be- - 
quently encounters systems of nonlinear differential equations, either ordinary o r  
partial. While methods of numerical and asymptotic solution of systems of 
ordinary differential equations a re  well developed, intensive development of meth- 
ods for solving partial differential equations started only with the advent of 
electronic computers. There exist three quite universal methods of solving systems 
of nonlinear partial differential equations, each of which utilizes a large number of 
directions and approaches and is suitable for the study of different classes of prob- 
lems. 

1. Method of finite differences. This is the most highly developed method 
of the three at the present time and is widely applied for solving linear and nonlinear 
hyperbolic, elliptical and parabolic type equations. 
integration is subdivided into a fixed orthogonal grid. 
in the various directions are replaced by finite differences; usually a so-called 
implicit difference scheme is used. 
the procedure, of a system of linear algebraic equations involving sometimes 
several hundred unknowns. 
been studied in sufficient detail for equations with constant coefficients. 

Here, as  a rule, the region of 
The derivatives of functions 

This results in the solution, at each step of 

Problems of the theory of difference schemes have 

2. Method of integral relations. In this method, which is a generalization of 
the well-hown method of straight lines, the region of integration is subdivided into 
strips by a series of curves, the shape of which is determined by the form of the 
region's boundaries. The system of partial differential equations , written in 
divergence form, is integrated across these strips and then the functions contained 
in the integrands a re  replaced by certain interpolation expressions. The approxi- 
mating system of ordinary differential equations thus obtained is integrated numeri- 
cally. The method of integral relations, as  the method of finite differences, is 
applicable to various types of equations. 

3. Method of characteristics. This method is used only for solving hyperbolic 
type equations. 
lines, which is constructed in the course of computation. However, it is possible 
to use schemes of the method of characteristics, in which the computations a re  
carried out by strips bounded by fixed lines. 

The solution here is computed with the aid of a grid of characteristic 

/ lo2 - 

The method of characteristics can be used for precise determination of the 
point of origin of secondary shock waves within the flow field as the result of inter- 
section of characteristics of one family. However, if a large number of singularities 
occur, calculations by this method are difficult. This being so, this method should 
be used for computing hyperbolic problems in which the number of discontinuities is 
moderate (for example, steady-state problems of supersonic gasdynamics). 
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Lately, considerable success has been achieved in  using the method of char- 
acteristics for the computation of three-dimensional gas flows. 

Subsequently I shall not consider finite-difference methods (except for pre- 
senting several specific examples), since V. V. Rusanov, V. F. D'yachenko and 
G. I. Marchuk in their lectures have illuminated in sufficient detail many aspects 
of construction of difference schemes and of their applications. I shall dwell on 
certain questions of the use of the method of integral relations and lines, as well 
as of the method of characteristics for solving steady-state gasdynamics problems. 

A s  is known, in gasdpamic problems one frequently has to deal with singularities 
of various kinds, discontinuities within the region of integration produced by the 
physical statement of the problem and nonlinearity of the differential equations. In 
this case the starting system of equations has no smooth solutions. 

When the number of these singularities is small and it is possible to formulate 
certain boundary conditions for them, the problem reduces to determining con- 
tinuous solutions in regions bounded by these singular lines o r  surfaces. In con- 
structing numerical solutions of this class of problems, which appear, for example, 
in steady-state gasdynamics , extensive use is made, alongside difference methods, 
of the method of integral relations and the method of characteristics, which will 
principally be discussed below. 

/1 - 

In the case when the number of discontinuities inside the integration region is 
large, it becomes difficult to keep track of each of them. In order to cope with 
these difficulties, special difference schemes of "through" calculation were de- 
vised, which permit one to carry out calculations without regard for the singulari- 
ties (this was discussed in detail in V. F. D'yachenko's lectures). 

PART I. THE METHOD OF INTEGRAL RELATIONS 

Since methods of numerical solution of ordinary differential equations are 
well developed, great practical importance is acquired by methods of solving 
partial differential equations which reduce them approximately to systems of 
ordinary differential equations. These methods include the method of straight 
lines and the method of integral relations. They, as the method of finite differences, 
are applied to equations of different types, including also mixed-type equations. 

In the classical method of straight lines the integration region is subdivided 
into strips by fixed straight lines and the derivatives with respect to one of the 
directions a re  replaced by finite-difference relations (usually linear). This yields 

using this approach, satisfactory accuracy is obtained by taking a quite large 
number of strips. 

system of ordinary differential equations, which is solved numerically. When 

The method of integral relations, suggested by A. A. Dorodnitsyn [ 11 in 1951 
for solving certain nonlinear problems of aerohydrodynamics, was developed by 
0. M. Belotserkovskiy and P. I. Chushkin [21 and has been used successfully for 
solving various problems of gasdynamics. 
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The idea underlying the method of integral relations consists in covering the 
region of integration by some curvilinear (in general) computational grid and in 
introducing into the starting system of equations a representation of functions with 

approximating system of ordinary differential equations, which is then solved 
numerically. The structure of the computational grids depends here on the shape 
of the boundaries of the region under study, and the starting system of partial 
differential equations is first written in the form of integral r'elations for the 
strips. For three-dimensional gasdynamic problems, one usually introduces an 
additional trigonometric approximation in the transverse plane. Functions can 
also be represented in two directions. 

/lo4 respect to one of the directions, which yields, in the two-dimensional case, an - 

The freedom in selecting approximating functions makes it possible here to 
obtain a sufficiently exact solution with a small number of strips, which is of 
great importance in practical calculations. In the generalized method of integral 
relations 131, due to introduction of smoothing functions which a re  selected in 
accordance with the expected behavior of the sought functions, one gets a system 
of ordinary differential equations for functionals which are smoother than in the 
ordinary method of integral relations. This yields satisfactory accuracy with a 
relatively small number of approximating grid intersections. 

As was pointed out, the method of integral relations has the advantage that 
here one uses the extensively developed tools of numerical solution of systems of 
ordinary differential equations. 
possible to use asymptotic methods for solving these equations. Programs for 
computer computations a re  found to be sufficiently simple and do not require a 
large machine memory. However, the application of this method involves dif- 
ficulties when it is necessary to solve multiparameter boundary-value problems 
for the approximating system of higher order ordinary differential equations. In 
this case the method is effective if i t  yields a sufficiently exact solution when the 
system is of a rather low order or when the method of computations is satisfactorily 
organized. 

In addition, in the case of unbounded regions it is 

For a number of years the Computation Center of the USSR Academy of 
Sciences and other organizations have engaged in the development and study of the 
method of integral equations, as well as its application to various problems of 
mechanics and physics. This method is surveyed in [21.  Here I shall briefly 
present the basic tenets of the method of integral equations and describe some 
features of its application. 

1. The Fundamental - Principles -. . of the Method of Integral Equations 

/ lo5 

In this method the starting differential equations are  written in divergence 
form. 
mechanics expressing thelaws of conservation of mass, momentum, energy, charge, 
etc. 
form are  taken in the following general form: 

This form is suitable for representing differential equations of physics and 

In the two-dimensional case the starting differential equations in divergence 
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Fi(x,y,uI,. . . vuk)  , i =  1,2,. . . , k, 

where x and y are independent variables, ul, . . . , % are the sought functions; 
Pi, Qi and Fi are known functions of x, y, ul, . . . , 
shape of a curvilinear rectangle with the boundaries 

"k. 
Let it be required to find the solution of system (1.1) in a region having the 

In individual cases it may happen that 

a = - - ; b -  - ; A ( X )  = const. 

We shall assume, concerning the boundary conditions of system (1. l), that there 
exists a total of k conditions at boundaries x = a and x = by and k conditions at 
boundaries y = 0 and y = A ( x ) .  If boundary y = A(%) is not known -- a priori, then still 
mother boundary condition is needed. If, however, the boundaries contain singular 
points, the corresponding boundary conditions may not exist - they are replaced 
by the requirement that the solution be regular. Multiplying each of equations (1.1) 
by some piecewise continuous function f(y) and integrating it with respect to y, 
from y = 0 to y- A ( % ) ,  we get integral relations for i = 1, 2, . . . , k (subscript i is 
omitted) 

Here 

Quantities Q and QA have the same meaning. 0 

We note that function f(y) may have a finite number of discontinuities of the 
A(x) Mx) 

0 0 
first kind. Then J f ' (y)Qdy should be replaced by J Qdf. 
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In the method of integral relations the solution is constructed in successive 
approximations. Let us consider the Nth approximation. The region of inte- 
gration is subdivided into N strips, for which line N-1 is drawn between boundaries 
y = O  andy=A(x)(Fig. 1.1): 

n 
N y - y , ( x ) = - ~ ( ~ ) ,  n -  1, 2, ..., N - 1 ,  

where y = 0, y,(x) = A (I) 0 

a 
Figure 1.1. 

Functions P, Q and F are now represented by certain interpolation formulas 
in terms of their values P 
example 

Qn and F at the boundaries of strips y = y (x). For n' n n 

and z (y) a re  interpolation functions, the specific form of which depends on the 
selection of interpolation formulas (i. e. , on the form of initial functions). Func- 
tions Q and F are  represented similarly. 

n 
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We now select a system of groups of functions 

such that the Nth group contains N linearly independent functions. Functions of 
different groups may be identical, but as a whole the entire system of functions 
should be closed. 

In the Nth approximation we now write integral relations such as (1.2) for 
each function { f, ( Y )  I ( !' ) 1 (n = 1, 2,  . . . , N) of the Nth group of system 
(1.4).  We w i l l  then have a total of kN linearly independent integral relations. 
Integrands P, Q and F are  subsequently replaced by their corresponding interpo- 
lation expressions such as  (1.3). Then the integrals contained in the integral 
relations will be written as  

I f, 

where Cn a re  numerical coefficients which depend on the selection of interpolation 

formulas and the form of functions f (y) and are, in essence, generalized Coates 
coefficients. 

n 

Upon substituting Eqs. (1.5) into intergral relations such as (1 .2) ,  we obtain 
a system of ordinary differential equations in x (the so-called approximating 
system) for k(N + 1) unknown functions U , , ( X )  ( V  = 1, 2, . . . , k, n = 0, 1, 2, . . . , 
N) on the boundaries of strips y = yn(x). 
conditions at the outer boundaries y = 0 and y,- A (x ) .  The boundary conditions 

x = a and x = b complete the system of boundary conditions for the approximating 
system. 

This system is closed by k boundary 

0 

The approximating system of ordinary differential equations thus obtained is 
integrated by some numerical method on a computer. 

We note that functions Pn(x) enter Eq. (1.5) linearly. Hence the approximating 
system of ordinary differential equations will be linear in the derivatives dPn/dx, 

and this means that it can be easily reduced to the computational form by simply 
solving it for these derivatives. This can also be done by computer. 

In general, functions fn(y) a re  selected quite arbitrarily. We now consider 

the following two particular cases. 
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Y 

Y l  

1. If the Dirac 6-f~nCtiOn is assumed for fn(y) 

then we have the well-known method of straight lines, in which derivatives with 
respect to y are replaced by a finite difference expression satisfying the selected 
interpolation formulas (1.3). 

/ lo8 2. If one assumes the step functions - 

then the simple method of integral relations is obtained. 
laws expressed by Eqs. (1.1) wil l  be written for the strips in the form of the 
integral relations 

Here the conservation 

Y Y 

A large number of gasdynamics problems has been solved using this scheme. 

Yet another form of the method of integral relations is possible. In two- 
dimensional problems the integration region can be divided not into strips, but 
into subregions (Fig. 1.2), with the integration being carried out in two directions, 
thus approximating functions in two variables. The approximating system then 
becomes one of nonlinear algebraic or  transcendental equations, which is solved 
numerically by computer. This scheme was used in a number of problems. 

Finally, the method of integral relations can 
be extended to the case of three-dimensional 
partial differential equations. Two approaches 
a r e  possible here. h the first approach the 
initial system of equations is multiplied by some 
function which depends on two of the variables 
in question (the analog of function fn(y) in the 
two-dimensional case) and is integrated with 
respect to these two variables. Then, applying 
quadrature formulas to the double integrals thus 
obtained, the result is a system of ordinary dif- 

i“?= 
5-1- 

a b x  ferential equations with respect to the third 
Figure 1.2. variable. 

/ l o9  - 
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In the second approach the initial system of equations is first integrated with 
respect to one of the variables and the integrands are represented in terms of 
this variable by interpolation expressions whose coefficients will depend on the 
two remaining variables. Then the approximating system becomes one of 
partial differential equations in these two variables and it can be solved by the 
method of integral relations developed for two-dimensional problems. 

In the three dimensional case one may also combine the method of integral 
relations with that of finite differences or of characteristics. 

1. Let us emphasize the characteristic features of the method of integral 
relations and the advantages which are  gained by them. 
of this method is the fact that here the solution of the problem is broken up into 
two separate stages. The first consists in reducing an exact system of partial 
differential equations to its approximating system of ordinary differential equa- 
tions. 
mating system is integrated numerically. 

The distinguishing feature 

Then, at the first stage, which can be considered separately, this approxi- 

In this method it is actually an integral which is being approximated. This 
somewhat increases the approximation accuracy by decreasing the coefficient 
of the residual term. In addition, the integral is a smoother function than the 
integrand, due to which a satisfactory representation for the integral is obtained 
with a small number of interpolation nodes. Finally, the integral has continuous 
representation also in the case when the integrand has a finite discontinuity. 

The starting equations in the method of integral relations are  taken in diver- 
gent form, which is convenient and useful since integration with respect to one of 
the variables is then carried out exactly. ' In addition, as  is easily seen, integral 
relations constructed from equations in divergence form and expressing conservation 
laws, remain valid also upon crossing the discontinuity surface. Thus, if the gas- 
dynamic problem under study has several surfaces of discontinuity and it is dif- 
ficult to keep track of all of them, the method of integral relations can be used for 
making through computations and then these surfaces can be constructed from 
gradients of "detached" quantities. 

- /110 

In the method of integral relations the integration region is in general sub- 
divided by curved lines and the method proper is applicable to regions of arbitrary 
form - finite and infinite, with rectangular and curvilinear boundaries, as  well as  
in the case when the boundaries a re  unknown. The latter is of particular significance 
in gasdynamics problems, where usually the shock wave shapes o r  boundaries of the 
region of influence are  not a priori known. -- 

Finally, in the method of integral relations one has available a quite arbitrary 
selection of interpolation expressions and functions fn(y) which must be selected 
with consideration of the nature of the solution. This makes i t  possible to obtain 
quite exact results with rather low-order approximations. 
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2. We now consider some aspects of practical application of the method of 
integral relations. 
our examination will concern itself with these applications. 

Since this method is most extensively used in hydromechanics, 

When using this method the starting system of partial differential equations 
However, it is more convenient can, in general, be written in any coordinates. 

to use an orthogonal coordinate system in which one of the curvilinear boundaries, 
i. e. , the body's contour, is a coordinate curve. Thus, elliptical coordinates 
should be used for elliptical contours. In considering contours of general form it 
is convenient to use the s, n coordinate system, where s is the a rc  length mea- 
sured along the contour and n is the normal to the contour. In some schemes of 
solution using this method it becomes necessary to make some two boundaries 
parallel, let  us say, boundaries r i( e) and r I r l (  e ) .  This can be done by intro- 
ducing the coordinates 

- /111 

If the integration region is infinite in the physical plane, the former can be 
made finite by converting to some new independent variable. 

A s  fa r  as  possible, the starting system written in divergence form should 
contain known integrals instead of some differential equations. 
sible to reduce the number of differential equations and thus to reduce the number 
of computations. It should be noted that mathematically equivalent systems are  
not always equivalent from the point of view of numerical solution of their corre- 
sponding approximating systems. Hence the starting system should retain those 
equations which typify the nature of the phenomenon. 
the supersonic flow around a cone at an angle of attack, when one uses the 
spherical coordinates r ,  e and y~ , the Bernoulli integral should be introduced in- 
stead of the momentum equation in the projection on r ,  i. e., in the direction of 
the main flow, since the two other equations of motion describe a finer and more 
important ( in  this problem) effect, which is the transverse flow. 

This makes it pos- 

For example, in calculating 

Selection of the direction of approximation and its form is of great importance 
in constructing the approximating scheme in the method of integral relations. It 
is found that the solution obtained. here yields a more exact distribution of the 
sought functions in the direction of integration of the approximating scheme than in 
the direction along which it is approximated. 
in selecting the approximation direction, since the functions may vary in one direction 
more sharply than in the other. In all cases the region of influence of the approxi- 
mating system should coincide with o r  be larger than the region of influence of the 
starting system. 

This should be taken into account 

The integration region can be subdivided into strips either by equidistant lines, 
or in the zone of sharp variation of functions the intermediate lines can be made 
denser. Usually use is made of "through" interpolation using values of generating 
functions at the boundaries of all the strips (Fig. 1.3a). It is also possible to use 
''piecewise" interpolation. For  example, the functions can be represented linearly 
across each individual strip ( Fig. 1.3b), and parabolically across adjoining strips 

/= 
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(Fig. 1.3~). This permits considerable simplification of the form of the approxi- 
mating systems, with the necessary accuracy provided by using a large number of 
strips. Such approximations a re  convenient in solving Cauchy problems (compu- 
tation of boundary layers o r  flows in the supersonic region), and they may be found 
more reliable than the "through" approximations in regions with weak discontinuities. 
It is also possible to use piecewise overlapping approximations (Fig. 1.3d). 

It should be mentioned that the system of base functions of the selected inter- 
polation formulas should be a Chebyshev system. Usually polynomial o r  trigono- 
metric interpolation is used. The interpolation formulas should make allowance 
for the nature of variation of the functions they represent, in particular their 
symmetry, behavior at singular points and their asymptotic behavior, For example, 
in the problem of subsonic flow around ellipses, which was solved in the elliptical 
coordinates 5 a q 
mation with respect to q. 
fy the conditions at infinity. 

it is possible to use both polynomial and trigonometric approxi- 
But only in the latter case is i t  possible to exactly satis- 

In describing the generalized method of integral relations above we mentioned 
the requirements imposed on the system of functions I f ,  ( y) 1. It should also be 
added that if the integrands have a singularity in the integration region, then 
functions fn(y) should naturally be selected so  a s  to ensure convergence of all the 

integrals in the integral relations. Functions f (y) play the role of ffweights" for 
integral relations. We also note that the use of functions f (y) facilitates the re- n 
duction of the approximating system to canonical form. 

n 

The approximating system of ordinary differential equations is, as  a rule non- /113 - 
linear and is integrated numerically by computer using standard programs. No 
difficulties a re  encountered here in the case of the Cauchy problem, while the 
solution of boundary-value problems is either reduced to iterative solution of the 
Cauchy problem and selection of boundary conditions by interpolation (which is 
done by the machine) or  by applying iteration schemes (Newton's generalized 
method, etc. ). 

In some cases one must construct the solution in the vicinity of singularities. 
Regular singularities are crossed, for example, using appropriate series. If, 
however, the region is not bounded and a part of the boundary conditions is speci- 
fied at infinity, then one determines the asymptotic behavior of the approximating 
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system, which is then "spliced" to the numerical solution in the finite part of 
the region. 

Analytic estimates of the convergence and accuracy of the method of integral 
relations can be obtained for second order linear equations, their systems, as 
well as  for some nonlinear hyperbolic [41 and mixed lype nonlinear equations. 

Let us, for example, consider the problem which models a flow with a detached 
bow shock [ 51, 

o r  its equivalent system 

with the boundary conditions 

If the region of integration is subdivided by lines y = const and then linear 
interpolation is applied, the corresponding approximating operator will be written 
as  an inhomogeneous system of linear differential equations with constant coef- 
ficients. The solution of this system is found analytically in any approximation in 
the form of finite series. 

The maximum magnitude of error  (the difference between the exact and 
approximate solution) will be of order o (N-4/5 ), whence convergence of the 
method in the given case follows as N +- ( N  is the number of the approximation). 

The main accuracy criterion of the method of integral relations in actual 
computations is numerical estimates consisting of: 1) making calculations in 
different approximations; 2) making calculations using different numerical schemes 
and utilizing approximate representation of functions in diametrically opposite di- 
rections; 3) checking of exact integrals, properties of individual exact solutions, 
etc., which a re  not used in constructing the starting system. 

Experience in solving various gasdynamics problems by the method of integral 
relations shows that in the majority of cases a rationally constructed scheme yields 
sufficient accuracy as early as the second or third approximations. 
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3. Solution of Gasdynamiis Prcobl_ems by the Method of - 
Integral Relations 

The method of integral relations has been employed for solving a large num- 
ber of gasdynamic problems. This pertains primarily to calculation of two-di- 
mensional (flat, axisymmetrical, conic) steady gas flows. The problems con- 
sidered pertained to internal and external flows in potential motion, vortex flow 
of ideal o r  real gases past bodies in the presence of shock waves, calculation of 
the boundary layer at bodies in a flow of viscous gas. Equations describing these 
gas flows are of different types, i. e., they may be parabolic, elliptical, hyperbolic 
and mixed. In addition the method of integral relations is presently used with great 
success in computation .of three-dimensional mixed and supersonic flows of gases 
about bodies of revolution at an angle of attack, and also in the case of unsteady 
flows. 

We shall first consider as an illustration the flow of gas a t  the speed of sound 
past a body. The generalized method of integral relations will be illustrated by 
means of boundary layer problems and, finally, specific numerical schemes 
(including computational results) will be constructed for calculating the flow past 
blunt bodies with a detached bow shock wave. /115 - 

1. Symmetrical flow about bodies moving at the speed of sound 

The method of integral relations for solving this mixed-type problem was 
developed by P. I. Chushkin 16 1 , who considered the sonic gas flow (incident Mach 
number Ma = 1) about flat and axisymmetrical bodies with an elliptical as well as  

arbitrary contour. The solution is constructed in the 4 ,  q ,  orthogonal coordinates, 
in which 

where r = ro (e) is the equation of the body's contour in polar coordinates. Ac- 
cordingly, curve 4 = 0 represents the body's contour, while at infinity these 
coordinates tend toward the polar coordinate system. For the case of an 
elliptical contour these coordinates a re  simply replaced by ordinary elliptical 
coordinates. 

One can isolate in the flow under study (of which only the upper half-plane is 
considered) a minimal region of influence, whose boundaries a re  the axis q = 0 ,  
a part of the body's contour and the semi-infinite characteristics q=ql(e) ,  whose 
shape is not a priori known and which is tangent at infinity to the line M = 1 
(Fig. 1.4). The flow in this region is potential and is described, for example, 
in the two-dimensional case, by the system of equations 

-- 
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and the Bernoulli integral; here H and HII should be treated as Lam6 parameters 
for orthogonal coordinates assumed. 

I 

The nature of these equations for the sonic line is different. The boundary 
conditions consist of the symmetry requirement at axis q = 0, the requirements 
that the normal velocity component at the body become zero and that the sonic 
flow be uniform at infinity; in addition, the differential compatibility condition 
should be satisfied at the bounding characteristic. 

In solving this problem the region of influence is subdivided by the lines 

which pass between the bounding characteristic and the axis (see Fig. 1.4). 
Integrands x and A in the integral relations a re  represented with consideration 
of symmetry by the following interpolation polynomials: 

The system of differential equations for 4 will have only one singularity at 
infinity which must be entered-if integration is carried out starting from the body. 
Approximations of this kind ensure the existence, at infinity, of a singularity 
corresponding to uniform sonic flow, and thus make it possible to satisfy the 
impermeability condition along the entire contour of the body. Thus, the solution 
in any approximation is determined upon exact satisfaction of all of the problem's 
boundary conditions specified in exact consideration of the region of influence. 
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2. Flow in the boundary layer 

The generalized method of integral relations was used by A. A. Dorodnitsyn 
and Yu. N. Pavlovskiy [2, 3, 71 for calculation of incompressible as well as com- 
pressible laminar boundary layers at plane and axisymmetrical bodies with 
allowance for heat conduction and radiation. 

The plane problem for an incompressible fluid in the method of integral rela- 
tions reduces to solution of a single equation of the form 

/11' - d u where f , q are  Dorodnitsyn's variables; b -; U is the velocity at the outer 
dr; 

periphery of the boundary layer; u is the tangential velocity component, referred 
to U ( 0  5 u 5 1 ) ; e is a quantity inversely proportional to the drag coefficient (the 
sought function), upon detemiining which it is possible to find all the boundary 
layer characteristics of interest; f(u) is a 'Fweighting" function. 
put to f(u) is that it tend sufficiently rapidly to zero as u -* 1 and that then the integrals 
be converging. 

It is known that as u + 1, e = 0 ( - 1 .) , consequently IfJu ) I  can be represented 

The requirement 

by a system of power-law functions (in the N-th approximation): 

The integration region O S U Z  1 is subdivided into strips by lines u = const, and the 

integrands a re  approximated as 
n 

The integral relations constructed for each of the functions fn(u), upon substitution 
in them of the above representations, yield a system of ordinary differential 
equations in 4 ,  for which the Cauchy problem is solved, for determining en (n = 
0, 1, 2, O . . y  N - 1). 

Algorithms of numerical schemes of the method of integral relations will be 
described in more detail later on, in examining problems of supersonic flow past 
blunt bodies and in calculating boundary-layer flows. 
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PART II. THE METHOD OF CHARACTERISTICS 

The method of characteristics is used extensively for calculation of hyperbolic 
problems of mechanics of continuous bodies. These a re  unsteady and steady 
problems of gasdynamics, the theory of elasticity, etc. 

We shall not consider in this review numerical schemes developed for calcu- 
lating unsteady one-dimensional problems, since this was discussed in the pre- 
ceding lectures. Here  we shall be concerned with construction of algorithms of 
the method of characteristics for computation of two- and three-dimensional super- 
sonic steady gas flows. 
various problems of external flow. We shall consider flows of an ideal gas with 
constant specific heats, as  well as flows with chemical reactions and radiation. 

/118 
These include flows inside of the nozzles, as well as  

- 

1. Development - of the Method of Characteristics 

The method of characteristics for numerical integration of hyperbolic 
equations was suggested as fa r  back as  over sixty years ago by Massau. Specialists 
in gasdynamics developed the method of characteristics virtually anew and pri- 
marily for calculation of steady-state two-dimensional and unsteady one-dimen- 
sional gas flows. 
K. 0. Friedrichs, A. Ferr i ,  A. A. Dorodnitsyn and others. 

Important contributions were made by F. I. Frankl, R. Courant, 

The advent of computers made i t  possible to sharply increase the number of 
computational points and at the same time to use the method of characteristics in 
its most general form for computation of supersonic gas flows with physical and 
chemical transformations, and most recently for calculation of general three- 
dimensional flows. A large contribution to the development of the modern method 
of characteristics was made by Yu. D. Shmyglevskiy, 0. N. Katskova, F. E. Ehlers, 
P. I. Chushkin, V. V. Rusanov, A. N. Krayko, I. N. Naumova, K. M. Magomedov, 
V. B. Minostsev and others [8-201. 

A few words on the properties of characteristics. A s  is known, weak 
disturbances in hyperbolic regions propagate in the flow along certain lines (sur- 
faces), which are  termed characteristic. 
flow and conical-type surfaces (conoids) in three-dimensional flows. 
face) is a characteristic if it  is impossible to uniquely define the derivatives of 
all the sought functions on this line (surface). This is due to the impossibility of 
solving the Cauchy problem with boundary conditions for such a surface. It can be 
shown that using some linear combination of starting equations for the hyperbolic 
region one can attain a situation whereby these equations will contain only internal 
derivatives along characteristic surfaces, and will not contain derivatives which 
lead us beyond the ensemble a€ characteristics. 

These a re  Mach lines in two-dimensional 
A line (sur- 

The use of this mathematically equivalent system for constructing the numeri- /119 
cal algorithm has its advantages over other numerical methods: the equations to 
be solved become much simpler at the characteristic surface; the solution's 
domain of dependence is exactly taken into account in using the characteristic grid; 
in addition, the method of characteristics has a high degree of mathematical rigor 
(the existence of a solution and convergence were proved for it). Due to these 
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circumstances the method of characteristics has been extensively used in solving 
hyperbolic problems. 

Numerical schemes of the method of characteristics in two- and three-di- 
mensional problems are constructed as purely characteristic schemes (the 
region of integration is covered by a curvilinear characteristic grid), as well as 
numerical schemes in which computations can be carried out "by strips. 
shall attempt to describe these approaches below. We start with presentation of 
the two-dimensional method of characteristics for solving steady supersonic 
problems of gasdynamics in the general case of nonequilibrium flows. 

We 

2. Two-Dimensional Characteristics 

1. Nonequilibrium flows 

Following A. N. Krayko [121 we consider steady-state plane ( v = 0) o r  
axisymmetric ( v = 1 ) supersonic flow of an inviscid and thermally nonconducting 
gas in the nonequilibrium case. This flow is described by continuity, motion and 
energy equations 

which interrelate the velocity components u and v (along the x and y axes 
respectively), density p, pressure p and specific enthalpy h; x, y denote a 
Cartesian coordinate system. 

Let the thermodynamic state of the gas be defined by the pressure p, tem- 
perature T of the translational degrees of freedom of some gas component, and n 
variables q (ql, . . . , q ) describing irreversible processes. The mass concen- 

trations, energies of internal degrees of freedom, etc. can be used as  variables 
q. We postulate that the variation of q is represented by the expression 

n 
/I2 ( - 

where F i ,  cp ' and f. a re  known functions of p, T and q; functions rp' a re  related to 
the rates of the physio-chemical processes; here the applicable variables qi a re  

"frozen!* for cp E 0 and are  a t  equilibrium for 'p' = 0 0 .  In accordance with this 
the equilibrium values of q. a r e  defined from fi(p, T, q) = 0. These equations 
describe a wide range of processes: 
degrees of freedom, change in translational temperatures of various gas com- 
ponents, etc. 

1 

1 
chemical reactions, excitation of internal 
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Let the equation of state of the gas P = P ( p ,  T, 4) and an expression for the 
specific enthalpy h = h(p, T, q) be also known. 

The starting equations will be solved in the Cartesian coordinates x, y. 
We shall use dimensionless variables, taking as  the characteristic reference 
variables some linear dimension, velocity V 

these can be the velocity and density of the incident flow), as well as the gas con- 
stant of some gas % . 
with consideration of their physical meaning. 

and density P, (in internal problems 
a, 

Variables q should be reduced to the dimensionless form 
m 

Let us take as the principal unknown functions the following quantities: 

5 -  tg& p -&I , where 8 is the angle made by the velocity vector with the x 

axis, 
* c is the "frozen" speed of sound, defined as 

c - 2 =  p + 5($ -". 
h T  

Here and in the following, letter subscripts of p and h wi l l  dentoe the applicable 
partial derivatives. 

two families of Mach lines (characteristics of the first and second families) and 
the streamlines ( YJ = const . ) . In the case of supersonic flow there exist three families of real characteristics: /121 - 

The characteristics of the first (using the upper sign in the equations) and 
second (lower sign) families are defined by the expressions 

with tensor notation used in the last equation a d  summation over i understood 
(for repeated subscripts): v = 0 o r  1, respectively, for the two-dimensional or 
axisymmetric cases. 

*It is assumed that in the flow region under computation 9 # 7i 12 (if the contrary 
is true, then 5 is replaced by the expression 5,' cot 8) .  
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We note that special cases may arise in using these equations when the angles 
of inclination of characteristics of the first and second families will either tend 
to n/2 (i.e., p - ~ , + 0  andp+ < + O ) J  o r  tend to zero (i.e., P $  + 1 + 0  a n d p r -  l + O ) .  
In these cases the possible singularities can be eliminated by multiplying the equa- 
tions by appropriate multipliers. 

The following relations a re  satisfied at the streamlines 

d T + D d p + E i d q ,  = 0; 

p h p -  1 h i  
where D = -__ ; Ei = 3; ho ( v  1 is the total enthalpy of the gas which is a known 

PI], h T  

function of q~ . The sought functions here are  x, y, p ,  y ,  p , T and q. 

For  a perfect gas these equations have the form [ 8-91 : 

where 01 is the Mach cone angle, k = XL, F is a function related to the streamline 

function v a s  
X + l  

(2.9) 

and 

1/(%-1) . e S/(x-l) dw;  dP = x 

and S = In - P is the entropy. The sought functions here are  x, y, p q ,  G I  
P X  

S .  Although these equations appear to be more complicated than those usually 
used, where e = arc  tan Wx/W and CY are  used instead of and i, they do not 

contain trigonometric functions, which provides a substantial economy (several 
fold) of machine time. 

Y 
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In using the method of characteristics one has to solve a number of elementary 
problems: the point in question here may have to be computed in the field on the 
body, on the shock wave, etc. Here the sought point lies at the intersection of 
lines which are  definied either by differential o r  finite [difference] relations. 
These lines may for example, be characteristics, streamlines, shock waves, 
etc. "he advantage of the method of characteristics consists in the fact that the 
characteristic equations contain only derivatives along the characteristics proper; 
these are written in difference form along the characteristic grid and the entire 
field of flow is computed step by step. 

Usually one uses a method of characteristics in which a differential equation 
in the form 

which is valid at some line ab is replaced by a finite difference equation of 
second-order accuracy 

The system of algebraic equations thus obtained is not solved explicitly, but is  
transformed for numerical computation to a form convenient for calculation by 
the method of successive approximations. 

/123 - 

Two schemes of the method of characteristics have been most completely de- 
veloped. In the first [9] the characteristic grid is constructed in the course of 
computations as the intersection of characteristics of two different families, i. e . ,  
the (x, y) coordinates of the points of intersection are  calculated simultaneously 
with the flow variables. In the second approach 1141 the calculation is carried out 
Irby strips1', bounded by lines xo and x 0 
within each strip are  drawn in such a manner that at X,, + Ax they pass through 
points with some given value of y. 

+ A X  ; here the segments of characteristics 

2. Solution of elementary problems 

We shall now consider briefly the solutionof elementary problems using both 

Scheme I (characteristic mid) [ 8-13] 

schemes having, for simplicity, reference to a perfect gas ( X  = c /c = const). 
P V  

1. Calculation of a point in a field. To determine quantities I x,  y, p ,  5 ,  1 
in point 3 from known values in points 2 and 1, Eqs. (2.6)-(2.8) a re  written in 
difference form along characteristics 2-3 and 1-3 (Fig. 2.1). The magnitude of S, 
the entropy, in point 3 is found from S=S(y). which relationship is determined at 
the shock wave, while the value of function \y is determined in terms of \;. from 
Eq. (2.9). 
iterations; here in the first iteration the values in point 3 a re  determined from 
those in point 2 (or l), and then average values between points 2-3 o r  1-3 are  
taken. Usually three iterations are sufficient. 

The system of difference equations [thus obtained] is solved by 
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The situation is more complicated in the nonequilibrium case [ 121. Quantities 
Ix, y ,  y ,  p ,  c,l in point 3 are found from Eqs. (2.1)-(2.3) written in difference 
form. Knowing y 3 ,  we find point 4 as the point of intersection of the streamline 
(arriving at point 3) with a known segment of characteristic 1-2' (Fig. 2.2). The 
variables in point 4 are determined by quadratic interpolation for the value Y4 = Y 3  
from known data on characteristic 1-2'. Then, from Eqs. (2.4)-(2.5) written 
in difference form along streamline 3-4, 

we find Iqj , T 1 in point 3. And then from equations 

t - 2 ,  p + pT - (lp - - )Ip): 2 + h = h, (w) 
hT 

we find I p , h , c I N 1 in point 3. 

2 

Figure 2. 1. Figure 2.2. 

As equilibrium is approached the convergence of this method detoriates (due 

The 
to the difference representation of Eq. (2.4)), requiring a significant reduction 
in the integration step, and this involves large expenditure of machine time. 

point is that the equation for Ci contains the quantity F i  = q 2 f i  and close to equi- 
librium the values of f. are close to zero and a re  very sensitive to changes in 

3 temperature T and in corresponding variables q. (a small e r ror  in determining T 

and qi3 at the preceding iteration results in a large e r ror  in the following iteration 

1 

1 
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for qi3, which leads to increased e r ror  in determining T3, etc. , ). 
this, f -  13 
series suffice). 
independently of the state of the flow and tends to the corresponding equilibrium 
state as 'p i +  =. 
difficulties. 

To eliminate 

is expanded in a power series in qi3 - 4i4 (the two first terms of the 
This difference form retains second-order accuracy, converges 

The computation of purely equilibrium states is also not free of 
This is discussed in more detail in [ 10, 11, 131. 

2. A point on a body with contour y = f(x) is also computed by iterations, using 
the impermeability condition, here in each iteration the body's contour is approxi- 
mated by the tangent at point 11, where x1 = x3. 
X ,  y and B (Fig. 2.3). 

/& 
i i  The unknown functions here a re  

3. Point 3 at shock wave 0-3 is computed by selecting the tangent of the angle 
made by the shock wave (tan u), from satisfaction of the compability condition at  
characteristic I of family 1-3, using known relationships across the shock 
(Fig. 2.4). 

Y 4 4  
Figure 2.3 .  Figure 2.4. 

Scheme I1 (computation "by strips") [ 13, 141 

This scheme is illustrated by axisymmetrical flows of a perfect gas. 
The solution will be obtained in 

Let the 
body's contour be specified a s  y = y,(x). 

variables L , 4 ,  where 5 = 7 - Y T  ( y  = Y,(X)  is the equation of the shock wave). 

Using again the sought functions < , p,  S and eliminating y from the preceding 
yB 'T 

equation, we get 

Y ' 4 Y B  - Y & +  Y, 

and instead of Eq. (2.8) we shall use 

The computing scheme is described below. 
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Let the values of sought functions at a number of points 4 = 5 i  = const (i =. . . , 
n - 1 ,  n n -F 1, . . .) be known on some strips x = x located between the shock 
wave ( 4  = 1 )  and the body(r; = 0) in a supersonic flow. It is required to determine 
the values of the sought functions for the same values of 5 5 i but in the strip *o 
+. A x ,  The same elementary problems are Ithen] solved, but in variables ( x  , E,). 

0 

The computation is started from a specific point 3 on the shock wave and is 
carried out by selecting values of tan a=Y; (contained in the equation) so as to 
satisfy the compatibility condition at characteristic I of family 1-3 (Fig. 2.5a). 

In calculating point 3 inside the field the values of the sought functions a re  
specified in it approximately, and then characteristic I of family 1-3, character- 
istic I1 of family 2-3 and streamlines 4-3 a re  extended outward from this point. 
The values of sought functions in points 1, 2 and 4 are  determined by interpolation, 
and then the quantities in point 3 are adjusted (Fig. 2.5b). 

/126 

Figure 2.5. 

To calculate the body's contour in point 3 (single unknown quantity p ) one 

uses the appropriate difference equations along characteristic I1 of family 2-3 
(Fig. 2 . 5 ~ ) .  

4 at strips xo are found by quadratic interpolation between the points n - 1, n, 

n + 1. The magnitude of step A x  is coordinated with that of A% on the basis of 
stability and accuracy of the computational scheme. 

3 

In all cases the values of sought functions in the intermediate points 1, 2 and 

This scheme requires somewhat more machine time than scheme I, but has a 
number of advantages: a) here the coordinates of points of intersection are knownfrom 
the start and need not be stored in the computer memory; b) thecomputational grid 
can be easily changed in the process of computations, which makes i t  possible to 
select in the most advantageous manner; c)  the starting data a re  here read out by 
sections x = const, which is very convenient in practice; d) this scheme can be 
conveniently combined with the finite-difference method, for example in computing 
three-dimensional pr ob1 em s . 

When using the method of characteristics the computations become complicated 
near the sonic line. Here it is necessary to first move away from this line by some 

118 



other methods (for example, by series), and only then apply the method of char- 
acteristics. However, these problems are not discussed here, since they are 
quite satisfactorily examined in previously mentioned references. Below we 
present examples of calculations using the method of characteristics. More de- 
tail can be found in the cited references. 

/127 - 3. Some calculated results 

The method of characteristics has been widely used to solve a large variety 
of steady-state two-dimensional supersonic gasdynamics problems. These per- 
tained to flows inside nozzles, as well as flows past bodies. Ideal gas flows, as  
well as equilibrium and nonequilibrium flows of real gases were considered. 
These problems are best solved by computer using the method of characteristic 
when using specially compiled sufficiently general programs. The latter should be 
suitable for computing a given class of problems (nozzle flow, flow past bodies) 
for different geometric parameters, incident-flow Mach numbers and for gases 
with different thermodynamic properties. 
istics we now present some results for supersonic gas flows obtained in the Com- 
puting Center of the USSR Academy of Sciences. 

To illustrate the method of character- 

0. N. Katskova and Yu. D. Shmyglevskiy [ 9 1 computed the axisymmetrical 
flow of a freely-expanding perfect gas with a plane transition surface. This flow 
is partially attained in a nozzle if its generatrix has a sharp corner in the throat 
cross section, and occurs in a region covered by a fan-shaped pattern of character- 
istics, emanating from this sharp corner. The solution in the immediate vicinity 
of the transition surface was found analytically by series expansion, while the 
method of characteristics was applied to the remaining part of the nozzle. De- 
tailed tables were computed for this axisymmetric flow for an ideal gas with dif- 
ferent values of the ratio of specific heats. 

0. N. Katskova [ 111 also extended the solution obtained in [91 to the case of 

The real gas considered was hydrogen, the temperature and 
a real gas in thermal equilibrium. 
sults for this case. 
pressure at the transition surface were taken as 5000°K and 1 atm. 
depicts three different streamlines, while Fig. 2 . 7  shows the variation in M along 
the flow axis. 
while the dashed lines show, for comparison, results of calculations for a perfect 
gas with various values of the ratio of specific heats ID 

Figures 2.6-2.7 show some computed re- 

Figure 2 . 6  

Here the solid lines denote results for equilibrium flow of hydrogen, 

Still another example of computations using the method of characteristics in- - /128 
volves nonequilibrium flow of dissociating oxygen in the expanding part of sxisym- 
metric nozzles with a sharp corner in the contour. These calculations were 
carried out by 0. N. Katskova and A. N. Krayko 121. A diagram of this type of 
nozzle is shown in Fig. 2.8. Here AC is the nozzle contour, AD is the initial 
and AB is the final characteristic of the acceleration portion of the nozzle (i. e., 
of the fan of rarefaction waves emanating from point A in the aforementioned 
corner), and BC is the closing characteristic. It was assumed that the flow in the 

T, = 5000°K, p*. = 1 atm, M, = 1.001. The constant direction 8 = 0" of the velocity 
vector was specified at characteristic BC, and M = 5 was given in point B. 

/12 9 initial section (x = 0) is at equilibrium, with the following constant variables: - 
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5 s  0 + 2 3 4 
Figure 2.6.  . X =  1667’; - - Xu1,4; - - - x=1.14; - : real 

gas. 

Y ”  L L C  F a n  8 I 

Figure 2 .8 .  

The calculated results are  shown in Figs. 2.9-2.12. Here the continuous 
lines pertain to nonequilibriwn flow (here numbers 1, 2,  3 denote respectively the 
results for nozzles with initial-section radii y* = 0.5, 2 and 8 cm), the dashed 
lines pertain to frozen flow (degree of dissociation q is constant), and the dash-dot 
lines are for equilibrium flow. All these calculations were made for the same 
temperature, pressure and inlet velocity. Changes in the relative temperature 
T/T, and in q along the axis of accelerating segment are  shown in Figs. 2 . 9  and 
2.10,  respectively, while the variation of the same quantities along the nozzle 
walls is depicted in Figs. 2 . 1 1  and 2.12. 
in results for the nonequilibrium, frozen and equilibrium flows. 

The graphs show substantial differences 
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Figure 2 .9 .  

I 
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Figure 2.10. 

Next we present examples of computations by the method of characteristics of 
external problems - i. e. , problems of supersonic flow past bodies. 
and N. P. Shulishnina 1211 carried out a number of computations for axisymmetric 
flows of ideal air ( x  = 1.4 1 about blunted cones, with different apex half- angles 
w ,  blunt nose shapes, and Ma, the Mach numbers of the incoming flow. Calcu- 
lations by the method of characteristics were carried out from some ray in the 
supersonic region, at which the initial data were taken from tables of 0. M. 
Belotserkovskiy's numerical solution [ 22 1 , obtained by the method of integral re- 
lations. Some results of these and other calculations a re  presented below. 

P. I. Chushkin 

/13 0 - 

12 1 

I 
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Figure 2.11. 
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Figure 2.12. 

Figure 2.13 shows the pressure distribution at the surface of blunted wedges 
(dashed lines) and cones (continuous lines) with different values of w at Ma, = 4. 
The pressure here is referred to po, the stagnation pressure, and the distance to 

the stagnation point along the x axis of the body is referred to R, the blunt-nose 
radius. The left branches of the curves correspond to blunted shapes. The graph 
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also shows horizontal dash-dot lines, which denote the pressures of corresponding 
nonblunt edges and cones. 

0.3 . 

8 

4 :j 

-.-.-. 

0 

0 2 4 6 8 S/R 
Figure 2.13. 

--- - wedge; - - cone. 

1 -__F_- 

0 30 60 90 % 
Figure 2.14. 

The flow past a cone with w = 5' and cylinder with w = 0' with spherically 
blunted noses at Ma, = a, and x = 1 . 4  was also calculated by the method of character- 
istics by strips [ 141. The results of these calculations are depicted in Fig. 2.14,  
which shows the pressure distribution at the body (continuous lines) and the shape 
of shock wave (dashed lines). 
ing values calculated by the ordinary method of characteristics. 

/&?- 

These graphs also contain points dentoing correspond- 
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I. N. Naumova also used the method of characteristics for calculating equilibrium 
flow of air past blunt cones. The blunting consisted of a sphere, and the initial 
data were taken from [231. Figures 2.15 and 2.16 show the distribution of tem- 
pergture T and Mach number M at cones with angles w = 20 and 0' (cylinder) and 
-20 (reversed cone) for the case of Mm = 6, pm = 1 atm, Tm = 300°K. 

Ton 

1000 

M 

0 -zoo L3 
\ O=oo 

0 5 "/R 0 5 "/R 

Figure 2.15. Figure 2.16. 

3. Three-Dimensional C$aracteris-tics 

I shall present here briefly only the idea of numerical schemes which quite 
recently produced interesting results in calculation of three-dimensional gas flows. 
Here one has the purely characteristic approach and the so-called "quasicharacter- 
istic" method. The latter is s o  called because in i t  the functions are  first  esti- 
mated with respect to one of the variables (angular); this yields an approximate 
two-dimensional system of equations which is then solved by the ordinary method 
of characteristics simultaneously over all the inter olation planes. The work con- 

Katskova and P. I. Chushkin (second approach). 
sidered here was carried out by K. M. Magomedov P 171 (first approach) and 0. N. 

1. The three-dimensional method of characteristics 

The main difficulties in using schemes of the three-dimensional method of 
characteristics is the absence of a unique interpretation of the characteristic re- 
lations. We now consider the principal tenets of the three-dimensional method of 
characteristics. 

Following [ 171, we use a s  the sought functions the pressure p, entropy S and 

angle f.3 and y of the velocity vector V = Vkos B ,  sin Bcos Y,  s i n  @in yl in the cylindri- 
cal coordinate system z ,  r, tp. 

-+ 

Then the equation of motion of a steady inviscid 
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thermally nonconducting gas flow can be written in the form 

+ 
k , v S  = 0, 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

+ + 
where p, V2 and M are  functions of p and S; kjv f = k i  grad f = df/ds. is the derivative 
of f along h i  , while the unit vectors k, (i = 1, 2, 3) form the local Cartesian co- 
ordinate system 

-a 1 + 

We now reduce Eq. (2.10)-(2.13) toJhe characteristic form. This system 
contains derivatives in three directions k i  (i = 1, 2,  3). We now ask whether it is 
possible to reduce the number of directions along which derivatives are  taken by 

immediate pertinence to finding of characteristics (2.10)-(2.13), since some linear 
combination of starting equations at the characteristic surfaces does not contain 
derivatives which go beyond this surface. 

/13 5 some linear combination of Eqs. (2.10)-(2.13). The answer to this question has - 

We now consider Eqs. (2.10)-(2.13) at some fixed point of the flow. Multiplying 

each of them by o Z o. f 0 and summing, we get expressions such as 
i ( j : ,  ) 

The condition that all the 
istic surface with normal n , is written as 

lie in- the same plane, which is tangent to the character- 

+-a 
n R j - . O  ( j - l ?  2, 3, 4 ) .  

The necessary and sufficient condition for existence of a nontrivial solution of this 
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homogeneous system of linear equations in w .  (zero equality of the determinant) 
has the form J 

(2.14) 

+ 
where n = i ik  
dition is a characteristic surface since, according to Eq. (2.14) there exists at 
least one linear combination of Eqs. (2.10)-(2.13) which does not contain 
derivatives going beyond this surface. 

( i  = 1, 2, 3). The surface a normal to which satisfies this con- 

Equation (2.14) yields two types of characteristics: 1st root: n = 0, along 
the streamline; all the planes passing through vector V are  characteristic planes 

(nl = "n V = 0 defines all the directions perpendicular to the streamline); - 2nd root: 

n = f L = +-sin a ,  along the bicharacteristics forming a conoid (Mach cone) in the 
+ +  M 

supersonic case ( n  V = f Vsin a defines the cone of characteristic normals). 

- e -  1 

+ 

We note that condition nl = sin Q is satisfied by the family of characteristic 

normals forming the cone of normals 

+ * -D * n = sina k + cos&(-sintk + costk 3 ) ,  

where t ranges from 0 to 2 n .  

The corresponding bicharacteristic directions 

form the Mach cone. The solution of Eq. (2.14) for such has the form 

w 1  I s i n a ;  w 2  - c o s a s i n t ;  w 3  = - c o s a c o s t ;  w 4  = 0. 

Linear combination of Eqs. (2.10)-(2.13) with these multipliers yields the com- 
patibility condition along the wave bicharacteristic 7' ( t ) 

dp dM2-i dp d Y  F E  
ds p V 2  ds ds r 

sin t + L__ -- - s i n  a COS t - + - 

(2.15) 
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df where - is the derivative along s, while df/ds is the derivative along 7'. Vector 

0' ( t  ) = costk2+ sin t 1: is perpendicular to velocity vector V and to bicharacteristic 
7' ( t 1. If we select a plane containing t and z ,  then Eq. (2.15) can formally be 
treated as a characteristic relation (compatibility condition) at the characteristic 
surface tangent to this plane. 

do 
-. -b -b 

-+ 
Condition n = 0 is satisfied by the family of characteristic normals n ( t  1 = 
-. - b 1  

sin t I:, - cost k, , t E [ 0,2 7~ 1 . The corresponding solution of Eq. (2.14) 

w 0; w 2  = cost; w3 = s i n t ;  w 4  = 0 

-. 
makes it possible to obtain the compatibility condition along streamline k, 

The constant-entropy condition 

ds - = 0. 
dso 

(2.16) 

(2.17) 

is also satisfied along the streamline (wl = w = w = 0, u = 1). 

Thus, the starting system of equations (2.10)-(2.13) has thus been reduced to 
the characteristic form (2. 15)-(2.17). 
passes through each point of the supersonic flow and compability conditions (2.15) 
are satisfied along each of the former (along streamlines (2.16) and (2.17)). How- 
ever, i t  should be remembered that the number of independent conditions cannot 
exceed the number of starting equations (i. e. , four). 

2 3  4 

An infinite set of bicharacteristics 
- /137 

Thus, the compability conditions for three-dimensional steady flows contain in- 
ternal derivatives along the nonbicharacteristic direction .'(&). 

Some interpretation and the corresponding difference form of Eqs. (2.15) - 
(2.17) serve as a basis for selection of a given numerical method. The large 
number of schemes is due to selection of t and different forms in which Eqs. (2.15) 
and (2.16) are written, which can then be differently interpreted. 

W e  consider the two-dimensional scheme. In the axisymmetrical (or plane) 
case y = 0 and, if we take t = 7r/2 and t = 3/2 7t ,  then Eq. (2.15) does not contain 
its right-hand sides (Eq. (2.16) is identical to zero) and we shall have known 
compatibility conditions along characteristics of families I and II. 
Eq. (2.17) we get a total characteristic system and unique interpretation, i, e., 
ordinary differential equations along the characteristic curves; here the compatibility 

Together with 
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condition depends only on its characteristic directions. Here there are no difficulties 
in selecting the numerical scheme, since Massau's classical scheme is used any- 
way. 

the characteristic curves, in the three-dimensional case the characteristics may 
be of a large variety, such as a characteristic surface, conoid, bicharacteristics, 
or, in a given point, respectively, planes, Mach cone and the latter's generatrices. 

We now consider Eq. (2.15) for three values of t€[0,2d ( t < t < t ,  1. We draw 

- + +  
While condition = sin a (or k 1 rl = 0) in the two dimensional case defines only 

through the given point A of the supersonic flow the Mach cone ( i = ; A  + s ;( t 1, S 
and t being the coordinates of the cone's surface) and three planes tangent to the 
cone (Fig. 2.17). Tangency will exist, by tefinition, along the generatrices of 
cone Ai, i. e., along the bicharacteristics T ( t  ). One can consider two schemes 

with tetrahedron AB1B2B3. 

Figure 2-17, 

1. The direct tetrahedral scheme. Let all the variables in point B1B2B3 be 
known. Knowing directions a' ( t i  ) for example, B.. (i, j = 1, 2, 3) ,  we can find 
ti and the characteristic normals n(ti) of planes AB.B.. At the intersection of the 

corresponding planes we find the sought point A, the variables at which a re  deter- 
mined from Eqs. (2.15) in difference form at tl, tg and t3 and from Eq. (2.17), 

expressing the conservation of entropy along the streamline. This scheme was 
developed by V. V, Rusanov in 1953 1153, and was recently used by Yu. N. 
Podladchikov [ 16 1 . 

13 

1 3  

2. The inverse tetrahedral scheme. Let the coordinates of computed point A 
be known. Selecting quite arbitrary values of t. (i = 1, 2, 3) (but in such a manner 

1 
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that they would uniformly extend over segment [ 0, 2n 1 ) we drop characteristic 
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planes onto the closest surface where the solution is known. All the hydrodynamic 
function in point A a re  found by determining the variables and derivatives along 
direction ;.a ( t i  1 from data at this surface and by writing Eq. (2.15) in difference 
form (derivatives with respect to a' can be determined from polynomials of through 
approximation on the plane, a s  this is done, for example in [201). 

Other schemes, based on a different interpretation of Eq. (2.15) are possibl$. 
However, in all these schemes the derivatives at nonbicharacteristic directions u 
are  replaced by finite-difference relationships. This raises many questions of the 
proper allowance for the region of influence, on the advantage of these methods over 
ordinary net-point methods, etc. 

3. The characteristic scheme. To provide a more natural interpretation of 
Eq. (x15), we shall first prove the following assertion. Starting equations (2.10)- 
(2.13) for 11 > 1 at a given point can be transformed in such a manner that the sys- 
tem thus obtained wil l  contain derivatives only along bicharacteristic directions. 

/139 - 

In fact, let us consider the bicharacteristics at t = 0, 7: 

Then 

3 '  Taking Eq. (2.15) at t = and t = - 'II, Eq. (2.16) at  t = $, as well as Eq. (2.17), 
.ac 2 

and substituting the values of uL into these equations, we get a system which is 
equivalent to the starting system (2.10)-(2.13) and which contains derivatives only 

in the bicharacteristic directions k ,  and T j  J = 0, 1 , 2, 3 ,  4, ( <3(0), -c4(7z), 

d o  

-b + + 

(2.18) 

In light of the above we shall now present a new interpretation of characteristic 
relations (the K. M. Magomedov scheme [ 171). We consider a given point A, 
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located at s m d l  distance h downstream of a three-dimensional type surface, at 
which the variables are known (Fig. 2.18). Replacing the derivatives in Eq. (2.18) 
by equations %backwardsff along bicharacteristics Ai(i = 1, 2 ,  3, 4) and streamline 

AO, we get an explicit difference scheme approximating the initial differential 
equations to with O(h ) (scheme of first-order accuracy). To obtain second-order 
accuracy we could have used points of a new plane P 

point A, but this makes the scheme implicit and has little in common with the meth- - /140 
od of characteristics. 

2 

the former being close to 0' 

Figure 2.18. 

K. M. Magomedov showed that in order to calculate a point a t  a shock wave and 
at a free surface it is necessary and sufficient to make use of only a single combi- 
nation of gasdynamic equations, containing derivatives passing beyond the surface 
being considered, for example, a characteristic equation only along a single bi- 
characteristic. The numerical algorithm of calculating boundary points in this 
scheme, as in the two-dimensional method, markedly simplifies the scheme and the 
only unknown is determined by Newton's method. 

The method's stability is ensured by the fact that the variables a t  points of 
intersection of characteristics with the preceding plane a re  determined by interpo- 
lation nodes, lying outside the domain of influence shown in Fig. 2.18. Actual 
calculations showed that linear interpolation should be used. 

The programming logic is sufficiently simple and the computations a re  similar 
to those for the two-dimensional problem. The principal difference of this method 
is the need of interpolation from two variables at the preceding plane. /141 
13 0 



In conclusion we consider a question pertaining to construction of a specific 
computational scheme. 
importance in any numerical method. Introduction of angles p and Y at the start  
was found inconvenient in [ 171, since this produces a singularity as  p + 0. Re- 
placement of the direct components of the velocity vector, pressure, density and 
entropy contained in the starting equations with tangents of the two angles of the 
velocity vector, pressure and enthalpy reduces the number of unknowns , simplifies 
the arithmetical expressions and is a natural generalization. of two-dimensional 
variables. In addition, these variables are  most convenient when allowance is 
made for equilibrium physico-chemical transformations. 

Obviously the selection of dependent variables is of great 

Using the three-dimensional method of characteristics and employing this 
scheme, K. M. Magomedov calculated three-dimensional flows around bodies of 
different shape (sharp and blunt bodies of revolution at  different angles of attack a, 
delta wing with blunted edges, etc. ). Some results of these calculations are  
presented here ( Figs. 2.19-2.23). 

0.3. 

0.2 - 

0.1 . 

Figure 2.19. 

0 Figure 2.19 shows for the case Mm = a, x = 1.4, (Y = 5 , w = 9O30' the pres- 
sure distribution at  blunted circular cones p (continuous lines) and p (dashed 

0 1 
lines) along three generatrices cp = 0,  90 and 180°, as well as  the parameter of the 
circumferential velocity component 5 ,  = - hF2. W This figure also shows data ob- 

tained by Yu. N. D'yakonov [241 by the net-point method suggested by K.I.  Babenko 
and G. P. Voskresenskiy 1251 (points and crosses). We note that the variables used 
in practical calculations were q and <, differing from those considered in [ 17 1, 
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0,25. 
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Figure 2.20, 

d=o0 Along the edge 

- 
8 x 

L :  
0 2 4 6  

Figure 2.21. 

Figure 2.22. 

Calculations were also made for hypersonic air flows past cones with allowance 
for equilibrium physico-chemical transformations. Figure 2.20 compares the 
applicable data with results obtained by V. V. Lunev and V. G. Pavlov (V 
m/sec, Ma = 23.5, cy = 0') by the ordinary two-dimensional method of character- 

istics (points). 

= 7500 
0 
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Some results of numerical solution of the more complicated three-dimensional 

spherical nose, are shown in Figs. 2.21-2.22 (Ma = 6, x = 1.4, x = 70°, a = Oo) .  

The pressure along the wing's lines of symmetry is shown in Fig. 2.21. It is seen 
from Fig. 2.22 (where the shock-wave shape is shown) that the shock wave remains 
&symmetrical at a sufficiently large distance from the nose. The complicated 
flow pattern is due to interaction of the axisymmetrical flow about the spherical 
nose and the flow emanating from edges at the flat part of the wing. 

problem, i. e., flow past a delta wing with cylindricdly blunted edges and with a /x 

Figure 2.23. 

Figure 2.23 shows the distribution of pressure p and the cross section R of the - /144 0 
shock wave by meridional planes Q = 0, 90 and 180' a t  an elongated cylinder with 
a sharp nose ( X  = 1,4) with M 
this graph, the pressure minimum at elongated bodies for  specific values of x is 
found at 'p < 180 O . A similar pattern exists also at the cylinder with a spherical 
nose. 

= 5 at angle of attack o! = 5'. As is seen from 
03 

2. The "quasicharacteristicrr method 

In conclusion we shall describe the idea underlying the construction of the 
frquasicharacteristicrr method developed by 0. N. Katskova and P. I. Chushkin 1181, 
and shall present some results of calculations of three-dimensional flows. 

Flows past axisymmetric (or similarly shaped) bodies are  most conveniently 
considered in the cylindrical coordinate system (r, x, v). We "straighten out" the 
region between the body and the shock wave, by replacing r with a new independent 

r - r T  
%-?T 

variable 5 = - (Fig. 2.24). The starting system of equations is then written in - /145 

the variables ( 4 ,  I , 84 1. 
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Figure 2.24. 

The three-dimensional system of differential equations is now reduced to its 
approximating two-dimensional system, by eliminating derivatives with respect to 
v. For this, in region o - -  < y < z we draw I + 1 meridional planes located a t  equal 

kx distances \y from one another I = IA = j- Then functions 

under the derivative sign are represented by interpolational trigonometric poly- 
nomials, using the above meridional planes as interpolation points. 

( k = 0, I .  . . . , ? 1. 

For odd surfaces we have 

for even surfaces 

where the values of ak and b depend on the values of the approximating functions 

at the meridional planes. From these representations we get expressions for 
k 

derivatives c4)k and (E); 
Substituting into the starting system of equations, we get an approximating 

system of partial differential equations in x and E .  The dependent variables will 
here be the values of the sought functions at planes I E \Y k . 
134 



The above system has two families of real characteristics. Still another 
family of curves, which C a n  be conditionally called %treamlines” (by analogy with 
streamlines of axisymmetric flow) will also have characteristic properties. 

Using the scheme of the two-dimensional method of characteristics ?‘by strips” 
x = const, the approximating system is solved numerically at a number of points of 
intersection E, = const simultaneously in all the meridional planes ‘Y- y k  

The computational scheme is a s  follows: a) characteristics and %treamlines” 
are generated from the nodes onto the preceding strip. The values of the functions 
at the points of intersection at the preceding strip are  determined by quadratic 
interpolation. The characteristic equations are written in difference form. b) 
Calculations a re  started from the shock wave 4 = 1, where equations of character- 
istics of the first family and relationships at the shock wave a re  used. 
internal points of the field are considered, and finally, points on the body 4 = 0, 
where equations of characteristics of the second family and the impermeability con- 
dition are  used. 

Then 

The implicit scheme thus constructed has the important advantage of being of 
the second order of accuracy with respect to x (all the remaining schemes have the 
first order of accuracy). This makes possible savings of machine time by selecting 
a coarser step along x for the specified accuracy. In addition, this scheme has less 
rigorous limitations, which a re  determined by the stability criterion. 

The method of integral relations can also be used for calculation of three-di- 
mensional flows. For this: 1) the starting system is written in divergence form; 
2) variables ( r , x ,  y 1 are  replaced by variables (E, ,  x , y 1; 3)  trigonometric interpo- 
lation is carried out for y ; 4) the ordinary method of integral relations is used at  
planes Y = \yk (interpolation for 5 , which yields the Cauchy problem for the approxi- 
mating system with respect to x). 

We shall now present some results obtained by the “quasicharacteristic” meth- 
The examples considered were different cases of supersonic flow past blunt od. 

cones at an angle of attack in the flow of ideal air ( x  = 1.4 ) . 
cross sections, and the blunt noses were spherical. The cases differed in the 
apex half-angle of the cone w ,  incident flow Machnumber M 

The cones had circular 

and angle of attack cy. 
00 

Some of the results for three-dimensional supersonic flow past a blunt cone are 
presented in Figs. 2.25-2.29 obtained for Moo = oo, w = 5O, cy = 10’. The linear 
dimensions in all the graphs were referred to the blunting radius, and the origin of 
the cylindrical coordinate system is located in the forward point of the body. 

/146 - 

The individual versions were calculated with a different computational grid. The 
number n (the number of points in each meridional plane) was taken as  25. It is 
shown by comparison with corresponding calculations using n = 50 that the value 
of n used ensures sufficient accuracy. The number I of meridional surfaces was 
also different in the several computations. All the principal cases were calculated 
for five meridional planes ( I = 4 ,  shown by solid lines on the graph), while some 
were computed with three meridional surfaces ( I = 2 , shown by %irclesff on the 

/147 - 

graphs). 
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/148 - Figure 2.25 shows the shape of the shock wave in sections y = const, while 
Fig. 2.26 depicts the pressure distribution along the body's surface (on recti- 
linear segment of the generatrix). The pressure variation between the shock wave 
and the body's surface along strips x = const for y = 0 and y = ?t is given in 
Figs. 2.27-2.28. 

Figure 2.25. Figure 2.26. 

P 

D.05 

P 
X =  i8 

0. fO 

d.= 40° 
~4.8 

0.05 

0.03 
' e  0 05 

x =1.8 

Q=O 

0.5 

Figure 2.27. Figure 2.28. 

Figure 2.29 compares the pressure distribution at a cone with w = 20' for 
Ma> = a, and a = 100 with the corresponding results (but at M 
by Yu. N. D'yakonov [ 251, who used the Babenko-Voskresenskiy finite-difference 
method 1251, shown by dashed curves on the graph. 

= 20) obtained 
OD 

Finally Figs. 2.30-2.31 show computations for the flow past and through bodies 
at angle of attack a under conditions when the shock wave is attached to the for- 
ward edge. Figure 2.30 shows the shock-wave wakes in the plane of symmetry of 
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Figure 2.29. 

Figure 2.30. 
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Figure 2.31. 

flow for a body with internal flow with a taper angle of 15' for Q = 10' and 

the same body in the aerodynamic coefficients C 

curve is for Ma = 5, the dashed curve is for Ma = a). 

/14 9 Ma = 3, 5, 7 and a. Figure 2.31 depicts the variations at the outer surface of 

xy Y 

- 
C and mz (the continuous 

PART III. CALCULATION OF THE FLOW AROUND BLUNTED BODIES 
WITH A DETACHED SHOCK WAVE 

/150 

Above we considered the ideas underlying construction of numerical algorithms 
using the method of integral relations and examined specific schemes for the meth- 
od of characteristics. Now we shall demonstrate different approaches to con- 
struction of steady-state numerical schemes for computation of the flow field in the 
problem of supersonic flow past blunt bodies. In spite of the fact that presently 
many algorithms a re  available for solving the mixed problem in the region of in- 
fluence of the blunting, their development and refinement is continuing, since 
practical needs require the solution of increasingly new and complicated problems 
(flows with chemical reactions, radiation, viscous flows, flow past bodies with a 
sharp corner in the contour generatrix, etc.). Subsequently we shall consider in 
sufficient detail the use of the method of integral relations for this problem, and we 
shall also examine a scheme of the method of straight lines and an attempt to regu- 
lize an incorrect inverse problem of gasdynamics using as an illustration the con- 
struction of special difference systems. 

Statement of the problem. Let a supersonic flow of an ideal inviscid gas flow 
onto a blunted body at constant velocity. The overall pattern of flow around a 
spherically blunted cone (w = 200, Ma = 6) is shown in Fig. 3.1. The region behind 

the detached shock wave (the location of which is not a priori known) consists of two 
zones: near the nose section of the body, in the region of influence of the blunting, 
bounded by limiting characteristic CE, the gas flow is mixed (ED is the sonic line, - /151 
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where the equations change type). This region of influence is replaced further 
downstream by a supersonic zone (hyperbolic-type equations). The flow in the 
mixed region is computed independently of the supersonic zone and, conversely, 
the flow in the supersonic zone is determined, for example, by the method of 
characteristics, after the region of influence of the blunting has been computed. 

Shock wave 

Figure 3.1. 

- . . - -. . . .- - . -. . . .- . . . . 

Figure 3.2. 

There exist two fundamentally different types of numerical methods for cal- 
culating mixed gas flows between a detached shock wave and the nose section. In 
direct-type methods the shock wave shape is determined for a given body geometry. 

13 9 
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In inverse type methods the shock wave shape is specified andthe corresponding 
body geometry is found. Here one has to deal with an incorrectly stated Cauchy 
problem. 

The determination of the flow field in the region of influence of the blunting is 
thus a complicated mathematical problem which is described by a nonlinear system 
of mixed-type partial differential equations, with a part of the boundary conditions 
specified at "moving" lines or  surfaces. 

- /153 

The solution of the above problem is of great practical interest, since blunt 
aerodynamical shapes are extensively used in flights at hypersonic velocities. In 
spite of the fact that the blunting may be geometrically small a s  compared with the 
entire body, it has an extraordinarily important effect on the entire flow pattern, 
forming the flow behavior being considered here. /= 

Figure 3 . 3  

Figures 3.2-3.4 present photographs of flows around bodies of different 
shapes in a wind tunnel obtained by G. M. Ryabinkov [ 261. Figure 3 . 2  shows an 
interferogram. of the flow about a sphere at 1\11 

are clearly seen). 

= 3 (where constant-density lines 
OD 

The photograph of Fig. 3 . 3  was obtained for an ellipsoid of 
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revolution with 6 = 1.5 at M 
was obtained for F = 0.5 and M 
ensuing section we shall compare the results computed by the method of integral 
relations with G. M. Ryabinkov's experimental data. 

= 3 by the shadow method, while that of Fig. 3.4 
a, 

= 3 using T8pler's instrument. At the end of the 
a, 

Figure 3.4.  

We shall consider algorithms for solving this problem obtained by the meth- 
od of integral relations and the method of straight lines, and w e  shall also describe a 
finite-difference scheme for a system of equations with pseudo-viscosity. 

1. Algorithms of Numerical Schemes of the Method of Integral 
Relatio6s - .  for-Computation-of M&ed ~ Gas Flows 

Nomenclature 

s - arc length measured along the body's contour (s = 0 at  the stagnation point); 
n - normal to the body's surface; 
R - radius of curvature of the body; 
e u - angle formed by the tangent to the body's contour and the shock wave, 

r - normal distance from the body's axis of symmetry; 
e - normal distance from the body's surface n = 0 to the shock wave n = E ( s 1; 
S = S 

s1 - universal gas constant; 
m 

respectively, and the direction of incoming flow; 

4 )  - equation of the boundary characteristic ( f = !/E( s I 1; /a 
- molecular weight of gas in incoming flow; 

00 
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u, v - components of velocity w in directions n and s ,  respectively, referred to 
the maximum velocity wma; 

wt, w - components of velocity w, respectively tangential and normal to the shock 
wave, referred to wmax; 

c - speed of sound referred to wma; 
M - Mach number; 
P - density, referred to the gas density of incoming flow pa; 

n 

p - pressure, referred to p wL ; 
OD max 

T - temperature rsferred to W 2 a p s  /a ; 

S - entropy referred to W / 2  rn ~ ; 

Ci - mass concentration of the ith component; 
h 

mi - molecular weight of the ith component 

wi - mass rate of formation of the ith component; 
p ,  x - number of gas-mixture components and of different kinds of atoms in the 

x - ratio of specific heats. 

h - specific enthalpy of the ith component and of the entire mixture, respec- 
tively, referred to stagnation enthalpy hO0 = wgax/2; i' 

incoming flow, respectively; 

The linear dimensions a re  referred to the radius of curvature of the body at 
the stagnation point Ro; subscript a, denotes quantities up to the shock wave; v = o 
o r  1, respectively, for the plane or axisymmetrical cases. 

As was previously noted, the problem of supersonic flow past bodies with de- 
tached shock wave involves consideration of mixed flow in the region of influence 
of the blunting. The method of integral relations [ 1, 2, 271 makes it possible to 
construct for such flows various formal numerical algorithms, efficient utilization 
of which makes possible computer calculation with the required accuracy of 
various cases of external flows. These algorithms can also be used in the study of 
mixed flows in nozzles, in solving certain geodetic problems, etc. 

We consider the direct steady problem, with all the boundary conditions of the 
starting system of equations satisfied in each approximation. 
sists in determining a unique continuous solution with continuous derivatives (with 
the possible exception of boundary points) in the minimal region of influence of the 
blunting (Figs. 3.5-3.7) bounded by shock wave AB3, axis of symmetry AE (in the 
two-dimensional case), the body's contour DE and the boundary (limiting) character- 
istic BiD. Figures 3.5-3.7 show the flow patterns (Ma, = 4.0, ideal gas x = 1.4), 
obtained by calculation for a circular cylinder (Fig. 3.5), sphere (3.6) and a sphere 
with a sharp corner (Fig. 3.7). The problem under study has regions of influence 
of the type shown in Fig. 3 .8 .  

The problem con- 

The boundary conditions for the starting system are specified at the shock 
front, the axis of symmetry and the body's surface. We thus obtain a problem with 
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an ffopenff upper boundary and the problem is made unique only by the condition of 
regularity, which singles out the class of solutions with a bounded derivative. 

The use of exact integrals of the system, divergence form in writing the 
partial derivatives, as well as the approximate representation of integrals in this 
method make possible a more exact approximation of. the starting differential 
operator of the system. 

Figure 3 .5 .  

Moo=4,  6 = 1 ,  u = O ,  

).L = 1.4; -- sonic 
line (w = c) - BID1; 
--- - singular line 

2 1  -. - - boundary char- 
acteristic B3D. 

(wX = C) - B D ; 

Figure 3 . 6 .  

= 4 ,  8 = 1 ,  'J  = 

1, x =1 .4 ;  - - sonic 
line - B D - singu- 
lar line (w = c) - B2 
D1; -.- - boundary char- 
acteristic B3D. 

1 1; 

X 

The type of algorithm depends primarily only on the variable with respect to 
which the approximation is made. Allowance for the different properties of flows, 
application of various kinds of complete systems of base functions and the dif- 
ferent structure of approximating grids do not affect the substance of the algorithm, 
and hence the computational program. From a universal program which can be 
used for calculating an arbitrary number N of the approximation, one can esti- 
mate the accuracy and rate of practical convergence of the method of integral re- 
lations. 

Three types of function (approximating grid) representations and their associated 
three types of algorithms were found convenient for different external flow regimes 
and body shapes 128, 261. 

Lines H = tk/N 1 E ( s 1; k = 1, 2, . . . , N - 1 were found convenient for use as 
approximation lines in the flow of gas at high M 

tion (scheme I, Fig. 3.9). 
if the flow variables vary sufficiently smoothly across the shock and the shock proper 

past bodies of complex configura- 
This subdivision of the region of integration is expedient 

OD 

1156 
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Figure 3.7. 

= 4 ,  v = l ,  x = l . 4  

(sphere with sharp 
corner x = 0.5); 
- - sonic line B D 
(w = c); --- - singular 
line (wx = c) B2D1; 

-. - - boundary char- 
acteristic B3D1. 

A 

1 1  

is sufficiently thin. In addition, in this case we get 
more complete information at the body and shock wave, 
which is important from the practical point of view. 

Under external flow conditions in which it is 
necessary to consider the relaxation properties of 
the gas (nonequilibrium dissociation, ionization, etc .) , 
forbodies with no abrupt changes in curvature i t  is 
expedient to use an algorithm involving the subdi- 
vision of the region bylines s=(k/X) sl(  4 1; (k = 1, 
2, . . . , N - 1 (scheme 11, Fig. 3.10). In a number 
of cases, for example, in computation of viscous 
flows, flows with comparatively low Ma, it is con- 
venient to use double approximation of functions, 
wherein the functions are first represented according 
to the first scheme, integration is carried out, and 
then approximation is carried out using the second 
scheme (scheme III in Fig. 3.11). As  a result we 
get a system of nonlinear algebraic equations which 
is solved numerically. This scheme provides a 
substantial economy of machine time. 

/I58 

a b C 

Figure 3 .8 .  

--- - characteristic of family I; -. - - characteristic of family 11; BID1- 

sonic line; B3D - boundary character- 

istic. 

b 

Figure 3.9. 
C 

144 



a b 

Figure 3.10. 

1. Scheme I. The computational 
algorithm for this scheme (which was de- 
veloped in 1957 [271) will be constructed 
for supersonic flow past an &symmetrical 
body with allowance for equilibrium 
dissociation of the gas. The independent 
variables here are  the s, n orthogonal 
coordinate system (see Fig. 3.9). 
complete system of equations (equations of 
motion projected on n, continuity, equation 

&Elo :gq ‘ Y  

s-0 0 f €  

Figure 3.11. 

-I-: 
-4-3- ‘-1 , 

The 

for the streamline, energy and the Bernoulli integral) in the dimensionless form 
is written as: 

where S. ( I+J 1 is the value of the entropy at the shock wave. 

The thermodynamic relationships have the form 

Here 

c - e L 

Z = r Z ;  ) I - rh;  t = r t ;  H =  r H ;  g = t g ;  

z = p U V ;  h - ~ u ;  H - p + p U 2 ;  g - p + p V 2 ;  

r - ro + n cos 0 ;  A = 1 + t~ /R ; ? = i / R  + A P cos e .  

(3.2) 

We now write the boundary conditions of the problem. At  the surface of the 
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body n = 0 

u = o ;  v-0 ;  s =S,(O) =o. 

at the shock wave n = ( S 1 

Here E,= w 2 s i n  20; E = E ,  - wnumcos0; D = pphT- p k 
s = 0, u = 0, y = 0, S = 0. 
differential equations , which are  here represented approximately. 

At the axis of symmetry T P’ 
The starting system (3.1)-(3* 2) contains two partial 

Functions iD f are represented as  follows: 

The region of integration is subdivided into N strips by lines f = k/N (k = 1, 2, . . . , 
N - 1) and we integrate each of the partial differential equations, which are  approxi- 
mated, with respect to n from the zeroth to each of the N remaining lines 
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or  

The second equation is transformed similarly. 
can be written as 

In vectorial form both equations /160 

where B, a, e are  the matrices 

i , k = i ,  2, ..., N. 

Using the relationship between coefficients of the approximating polynomials and 
functions at  the approximation lines 

we get a system of equations in the form 

E :  + K = O ;  at: + i e 8 + T = o .  
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Here 

We have thus obtained a system of 2N equations with 2N + 2 unknown functions 
(f. s t o  a Z* a €1. 

The relationship between the velocity components across the shock wave 

Y - W,sin(us-e); uN - W , C O S ( O - ~ )  N 

yields 

dw u;V - ~ , ~ ‘ s i n ( o -  0) 
UV’ -pu’+w, - -1  0 ’ 1 0 ;  u’= 

N N da U P 

where 

dw 
du 

dw 

a = 2 COS (u- 0) - W, s i n (  (J- CI) , 

P = 2 sin( u - e)+ w,cos( 0-0 ) . 
do 

/16 1 - Knowing u(S ) a  function E(S is found from the geometrical relationship E’( s ) = 
( 1 + ~/R) tan (  cr - e 1. Equations for o’and E ‘close the approximating system. 

Expressing functions t, z ,  Y, etc. in terms of the sought functions u, v, 
p and P ,  we get a system which can be written in vectorial form a s  @T’ = T a  where 
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The total approximating system of equations for numerical integration has the form 

/162 The prime everywhere denotes a derivative with respect to s. - 
In scheme I the boundary conditions at  the shock wave and the body are satis- 

fied automatically, which is seen from the construction of the approximating 
system. 

For s = 0 we have v i ( 0 )  = 0, ~ ~ ( 0 )  = 0, d o )  = x / 2 .  and Si(0) = 0. The values 
of w,(O), pi(0) and Ti(O) are  determined by integrating the equations along the zero 
streamline from the shock wave to the body, if the values of ui(0), (i = 1, 2, . . . , 
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N - 1) and c (0 1 are known. It follows from the form of nk, % and moo that for 

vk = ck matrix @ degenerates at k = 0, 1, . . . , N - 1 (this matrix does not degener- 
ate when k = N, due to a). If the solution exists also there, then it may be nonunique. 
The points at which vk = ck are singular points of the system (first-order poles). 

The set of these points will subsequently be called the singular line of the 
system. In order that derivatives at points of the singular line be limited, it is 
necessary to satisfy special conditions for the regularity of solution (for vk = ck 
we whould have Ek = 0, where vk = Ek/vt - c,)). Otherwise, the derivatives at 
this line will be infinite, i. e., the accelerations will be infinite and then the 
motion cannot be extended past the singular line (the singular line proper will 
serve as a limiting line - the Jacobian D = y, vanishes along this line). 

The nature of these points is clear. 

2 

d Cw,, wr) 
The direction s = const at the points is 

tangent to one of the characteristics of the starting system of differential equations. 
In fact, at points where v = c, we have v/w = c/w = 1/M = sin a, where Q! is the 
Mach number. Depending on the sign of the velocity component u, the direction 
s = const is tangent, at points of the singular line, to characteristics of the 
first  ( u  > 0 )  or  second ( w < 0 )  families. 

It is seen from the preceding discussion that in scheme I of the method of 
integral relations at each integration step one determines the approximate solution 
of the local Cauchy problem in the vicinity of line s = const for the starting dif- 
ferential operator. The singular line is the locus of points in which the direction 
of integration becomes perpendicular to the characteristic. The location of singu- 
lar points in selecting the other sought functions remains the same, whereas 
changes in the coordinate system (and, finally, the directions along which the 
derivatives are  determined) can also involve changes in the location of the singu- 
la r  line. 

- /163 

Thus, the only bounded solution of the starting system of equations is obtained 
from satisfaction of regularity conditions at points of the singular line for which 
system (3.3) should be integrated in the region (containing the singular line) up to 
boundary characteristic s = s,(n) (here the region of influence is taken into account 
exactly, Fig. 3.9b) o r  to the closing ray s = s* passing through the farthest re- 
moved singular point (Fig. 3.9a). The regularity conditions at the N singular 
points make it possible to uniquely determine the N unknown variables ui(0), (i = 1, 

2 , . . . , N - 1) E (0 1. The algorithms can be implemented directly on a computer for 
N = 1, 2, 3. At higher approximations one encounters difficulties related to the 
need of successive passing of the singular points. In this case one should use an 
iteration process, in which each iteration is used for passing a single singular 
point, while functions Q at the other lines of the subdividing grid a re  retained in 
the memory. 
USSR Academy of Sciences [29] .  

This iteration scheme was developed at the Computing Center of the 

Scheme I can be used for calculating flows past blunted bodies with a sharp 
corner in the contour o r  with a break in the curvature of the generatrix. The main 
difficulty arises here in constructing the computational algorithm at the point 
where the flow swings past the corner. Using for this a polar coordinate system 
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(Fig. 3. Sc), V. F. Ivanov successfully developed a method for calculating this class 
of bodies and made a large number of calculations. One of his results is shown 
in Fig. 3.7. 

2. Scheme II. We now consider the supersonic flow of a real gas past blunt 
bodies with allowance for nonequilibrium dissociation [30, 261. Let the incident 
flow consist of a p-component gas mixture containing A different kinds of atoms. 
The independent variables in constructing the algorithm using scheme I1 is the co- 
ordinate system s ,  4 ( g = n / E  ( s 1)  (Fig. 3. loa). The complete system contains, 
in addition to the gasdynamics equations, equations of material balance, the Dalton 
equation and relaxation equations. The starting system of equations in dimension- 
less form is written as: 

/164 

where 

The boundary conditions of the problem have been written out in scheme T. b 
addition, we have at the shock wave 4 = 1, C j = c im and at the boundary chacter- 
istic S = S ( 4 ) the compability equation 

(3.5) 
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where 

C. - 0 p +  a ;  p arctg a = arcsin - 
U' W '  

The streamline and characteristic equations have the form 

Writing q =sfsl( 4 1, we write along the shock front the approximation of partial 
differential equations of system (3.4). 
1, . . . , N) serves as the approximating grid. 

The set of lines q = k/ N ,  (k = 0, 

The functions are represented as 

N 

id 
f =  f ( i ) ( 5 h 2 i  for even functions; 

2 i - I  N 
i 1.1 

f =  e f ( , + C h  for odd functions. 

The equations of motion and continuity with the approximations made in them are  
integrated with respect to s from the zero streamline to each of the N remaining 
lines, for example, 

/16 5 - 
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or  

All  the other partial differential equations a re  transformed similarly. 

The system of ordinary differential equations in vectorial form, obtained after 
integration, can be written as 

where G ,  H, R, S and T are  matrices of the form /166 - 

i - O , l ,  ..., N etc. 

Here and subsequently the prime denotes differentiation with respect to 4 .  
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The coefficients in approximations f and the values of functions at boundaries 
( i) 

of strips fi are related a s  follows for odd and even functions, respectively: 

We substitute into the system of equations thus obtained respectively - 
f,,, = W ; r(*, hf , upon which i t  becomes 

- 1  - 1  
Derivatives M,, N, and f,; a re  now expressed in terms of derivatives of the 

sought functions u’, v’, p’ and P: a part of them is eliminated using the equation of 
state, the Bernoulli integral, conditions at the zero streamline and at the char- 
acteristic, which yields 

where 1’ = ~l.i+’ll; i = 0, 1 ,  .. . , N ;  E’ =lluzrll i i = 1, . . ., N; F = l l p , ~ ~ ;  i = I ,  ..., 
N - 1; Au, BUY C are N x N-dimensional matrices, Ap, Bp, Cp, are 
N-dimensional columns. 

- /167 

U 

The equations can be written more compactly in the form a:’= 7. The system 
of 3N ordinary differential equations thus obtained can be solved for all the 
O < f _ < 1 .  

The complete approximating system of equations for numerical integration using 
scheme II thus has the form 

\ 
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( 3 . 6  
O i  cent' d ) ci;- (Ci'),, l-ws3($) ; cc;,,, 1 - - P i  , 

i=O, l ,  ..., N, k = 1 , 2  ,..., x-1. 

The region of integration is here limited from the top by the bounding char- 
acteristic. 
integration coinciding identically with the region of influence of the starting system 
of equations. The scheme under consideration uses the compatibility condition (3.5) 
along the bounding characteristic. It contains derivatives only along the line s = 
s ( 6 1, consequently, in the approximating system (3.6) it is used in the exact form 
in each approximation. 
ensures regularity of the solution of the starting system of differential equations 
along the upper boundary. 
integration follows from the appropriate representation of sought functions along 

integration, as well as  from the iteration method proper used in constructing the 
sought numerical solution of the boundary-value problem for the approximating 
system. 

boundary conditions at the axis of symmetry are  satisfied automatically, which 
follows from the construction of the algorithm proper. 
means of N + 1 variables , E 1 I . . - Y E,v (for example, by an even-power poly- 
nomial), we find the values of all the sought functions at 4 = 1 from the applicable 
conditions at the shock wave. System (3 .6)  is integrated from E, = 1 to 4 = 0, where 
the values of all the starting variables EO , E 1 
from the N + 1 impermeability conditions at the body (ui(0) = 0, i = 0, 1, . . . , N8). 

conditions at the body and at the shock wave are here satisfied at discrete points, 
the number of which increases with the number N of the approximation. 

This makes it possible to carry out calculations with the region of 

This condition completes the approximating system and 

The regularity of the solution inside the region of 

/168 the shock front, regularity of the solution at the boundaries of the region of - 

For  system (3 .6)  we get a boundary-value problem in the region 0 451. The 

Specifiying the shock wave by 

. . . , are  uniquely determined 
The 

The approximating system in scheme II of the method of integral relations in 
this problem does not have singular points inside the integration region, since the 
solution of the local Cauchy problem in the vicinity of line 4 = const for the starting 
differential operator is always unique and bounded ( I I -x C). 

Variables , sl ,  . . . , E N  are  determined, for example, by Newton's general- 
Corrections 6 ~ j  to values of E j  a re  found from the system of equations ized method. 

iV au. 
Z 6~~ = - U i ( ~ , , ,  ..., E#), i = O , l ,  ..., N ,  where 

j - 0  a Ei 
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The calculations for flow past bodies with a sonic inflection in the vicinity of the 
corner point (in region G, Fig. 3. lob) 1311 included construction of the Vaglio- 
Laurin asymptotic solution [ 32 1 . 

The use of the boundary characteristic in scheme 11 of the method of integral 
relations makes possible exact closure of the region of integi.xtion and of the 
approximating system. In addition, the boundary conditions h,' le  a re  satisfied 
exactly in any approximation, which provides for stable computation also with 
approximations of high orders (the computations were carried out, for example, up 
to N = 12). 

-- /16 

3. Scheme III. Here one utilizes double approximation, under which the 
functions are first represented using scheme II, are  integrated, and then approxi- 
mation is again carried out using scheme I. As a result one obtains an approxi- 
mating system of nonlinear algebraic equation. The grid used for subdivision of 
the region of integration is shown in Fig. 3.11. 

In scheme 11 we obtained the system of equations T'=@-%j. We denote 1 - 6 = 

< and introduce the approximations 

where 'P io  = vi ( <  = 0). 

- - 
If we designate cp. . = 'pi (=;) then G i  ; c p i o  - if,,?i(*l * where ' p i ,  is a column 

' I  - 
of rank M with jth element vi ; vi,, is a column of the same rank with elements 

square matrix of rank M and m.. = (i/N)]. From this 

- 
is a column consisting of the coefficients of the approximation, M is a 0 'pi 0 ; v i (* ) 

11 

By virtue of the approximations used 

where x is a square matrix of rank M and x.. = (by-'. Substituting the expression 

for vi(,) , we have 
5 1  - 

- 8  - 1  - I vi,  = x g 0  ( V i *  -KO 1- 
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It remains to substitute the approximations thus introduced into the system 
c,-~'=+-'if=i a n d w r r i t e i t f o r a l l t h e 5 = j / ~ ~ ,  j = l , 2 ,  ..., h i .  Wegetasys tem 
of 3MN nonlinear algebraic equations in the form 

3' 

T9 
-1 1 

x?J, L - 6  = x hl, LO 

Here L, Lo and B are  M x 3N matrices, where 

This system is supplemented by the remaining equations of the total approximating 
system of equations (3 .6)  of scheme II with the approximations made by setting 
q = I - \and written at points of intersection of the computational grid. A l l  the 
boundary conditions a re  satisfied at the gr id  points lying at the boundary of the region. 

If through approximation is used (as is done here), then the numerical solution 
is found by solving a nonlinear algebraic system of equations at all points of the 
curvilinear grid subdividing the region. The regions of influence a re  then accounted 
for exactly. The use of a linear of quadratic approximation yields an ordinary dif- 
ference scheme on a curvilinear computational grid. 

Scheme III can be constructed similarly, f irst  using approximation according to 
scheme I and then according to scheme I1 (here it is possible to dispense with the 
second integration). This version of scheme III was considered in [26 ,  331. A s  was 
shown by F. D. Popov's calculations (ideal gas, ic = 1 . 4 ,  sphere, Ma, = 10) the 
exactness of computations using this scheme for 111, N = 4-5 (4-5 steps across and 
along the shock front) is up to 2.5-3 decimal places. The algebraic system was 
solved by iterations, the time of computation of the complete version on the BESM-2 
computer amounting to only a few minutes. 

A s  was mentioned previously, scheme III can be constructed also without the 
second integration. We shall now present a version of this scheme developed by 
F.D. Popov 1261. 

The starting system of partial differential equations can be represented i n  the 
form: 

/17 0 - 

1 

J 

P 

where U(s, n) is the system of the sought functions, Pi, Q. and Fi are known, 

generally nonlinear functions of s, n, ui(i = 1, . . . , k). For example, for an 
equilibrium flow, using in the starting system of equations both projections of the 

1 
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equation of motion, then k = 3,  

Here A = 1 + n/R, R is the radius of curvature of the body, v =. 1 for the axisym- 
metric and v = o for the planar case. 

The system is completed by the Bernoulli integral and the equation of state 

Subsequently, without loss of generality, we shall construct the approximating 
system according to scheme 111 (of the type I x 11) for Eqs. ( 3 . 7 )  with subscript i 
omitted. 

We subdivide, as in scheme I, the integration region by the lines 

and introduce approximations of the sets of functions 

Integration of the starting system of partial differential equations from the zeroth 
each of the N remaining lines and the use of the relationship between the coefficients 
of approximating polynomials and functions at approximation lines yields 

-3-P* + i p  J - h P  - F )+ -“Q, = 0, 
ds ( 4 s )  d s  * * (3 .9)  

where Q = AB-’ is a rectangular (N x N -I- 1) matrix 
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B- l  is the inverse matrix of 

d d; P,, P,, F, and Q,, respectively, a r e  the column matrices 

and the right-hand side of Eq. (3 .9)  contains a zero column matrix. 
of equations (3.9) for the derivatives of the sought functions (U), we get in the Nth 
approximation the approximating system according to scheme I. 

Solving system 

To obtain the approximating system of scheme I11 we now draw across the shock 
front M rays s = const, forming a grid on the region of integration 

and introduce approximations of functions P ( s )  with respect to s, with allowance 
for their evenness or  oddness relative to the axis of symmetry (for symmetrical 
flow) 

k 

I! j 
c pk q 2 j  for even functions; 

M j -  2 j -  1 

j =O 

Pk? for odd functions, 
j =  1 

P (s)= k (3.10) 

where ]Pk and jp are  coefficients of the approximation, defined by values of 
functions P at rays s = s I =cons t ,  

k 
I = 0, . . . , hf . 

Equations (3.10) are substituted in Eqs. (3 .9)  and the equations thus obtained 
k 

are  written for I = 0, . . . ,. b! - I .  
(3.10) in terms of the values of functions Pk(s) for s = s l  ( I = 0, . . , , h!), we get a 

Expressing now the coefficients of approximations 
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system of M x N nonlinear algebraic equations in the form 

which are  the approximate representations, in the given scheme of the partial dif- 
ferential equations of the starting system (3.7). Here 

f =os  . . . , M for even and I = 1, . . . , M -1 for odd functions 

9 is the transpose of matrix ply which is given a s  

D-l is the inverse of matrix D 

D= II 

I ,  j = 0,. . . , h! for even functions; 

l j -  1 
i I, j = 1,. . . , M for odd functions; 

c = llC,i I I ;  

d , j  

..., M-1; j-0, ..., M for even functions; 

...,M-l; j =  1 ,..., M for odd functions. 
% 

The right-hand sid6 of Eq. (3.11) contains 2.n (N x M)- zero matrix. 

Approximating system of equations (3.11) of scheme III together with the finite 
difference equations (3.8) determines the values of the sought functions in the 
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internal nodes of the region of integration. The boundary conditions on the wave 
and on the body are  satisfied automatically, since they a re  incorporated in con- 
structing scheme (3 .9)  (see subsection 2 of this section III). The conditions of 
regularity of solution in singular points of system (3.9) and the conditions at the 
axis of symmetry complete the approximating system of equations. Since in 
general rays s = si do not pass through singular points, then it is better to replace 
conditions of the type: Ek = 0 when v = c by regularity conditions, written as  k k  
expansions in s along each of the lines 

' tg  ( & L O ,  . . .)  A'--1); 

fi i 2 j  
2 E,?,, - 0 ;  k , m = 0 ,  ..., N-1, 

j - 0  

(3.12) 

/174 where JEk a re  coefficients of the approximation, defined by the values of E k (s) - 
defining the location of singular points at lines 4 k. Quantities T, ", , which are  not 
known -- a priori, a re  determined from N equations for 

M i  c N ~ ~ ~ ~ = o ,  h , m  = o ,  . . . ,  N - I .  
j = O  m 

(3 .13)  

similar to Eqs. ( 3 . 1 2 ) .  

I€ system of equations (3.11) is written for all the rays S = S1 ( I = 0, . . . , k! 1, 
then the approximating system of scheme III will become intedeterminate and 
Eqs. (3.12) and (3.13) could then be used for checking the calculations. 

The approximating equations of scheme Ill of the method of integral relations 
were used successfully, for example, in calculations of supersonic gas flow at low 
Moo (the calculations were carried out up to Moo = 1.05).  Some results of these 
calculations a re  presented later on. Schemes of this kind were found sufficiently 
effective in calculations of viscous gas flows, as  well as of flows with radiation. 

In essance, schemes I11 of the method of integral relations a re  finite-difference 
schemes. 
shock front), the directions of approximations and expressions for the "com- 
plexes" of functions being represented being selected from the requirement that they 
vary as smoothly as possible. The finite difference schemes a re  thus constructed 
here with special computational grids, when the starting system of partial dif- 
ferential equations is written in divergence form. 

Here, however, one uses a curvilinear computational grid (isolating the 

4. In the general case of nonlinear partial differential equations it is quite 
difficult to obtain analytic estimates of accuracy and convergence of the method of 
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integral relations. Hence all kinds of numerical estimates should be regarded here 
as the main criterion. For this purpose each of the schemes of the method of 
integral relations was used for calculations in various approximations, and results 
of computations obtained by these different schemes were compared. 

Calculations using scheme I were carried out for N = 1, 2, 3. The experience / 17; 
I of calculations shows that sufficient accuracy (2.5-3 decimal places) using this 

scheme is obtained in the majority of cases for axisymmetrical bodies with N = 2 
and for flat bodies with N = 2, 3. 

The algorithm of scheme 11 of the method of integral relations was considered 
in detail. 
none uilibrium flows; various body shapes) were carried out up to approximations 

for the approximations N = 2, 3, . . . , 6 (sphere, Ma = 10, perfect gas, x = 1.4) 
are  presented in Tables 1 and 2. The computed results (detachment of [bow] shock 
wave, velocity components, density and temperature) a r e  presented for the region 
between the shock wave and the body 05 4 5 1 along axis of symmetry s = 0 and the 
bounding characteristic of the second family s = S I ( 5 1. It was established in 
calculations for flows past smooth bodies using scheme I1 of the method of integral 
relations for a perfect gas, as well as with allowance for equilibrium o r  non- 
equilibrium processes, that the accuracy of the method increases inside the region 
of intergration by approximately one decimal place in each new approximation (from 
3.5-3 decimal places with N = 2-3 to 4-6 decimal places with N = 5-6). 

Calculations for various external flow regimes (perfect gas; equilibrium, 

7-12 7 26, 281. Some of the computed results of A. Bulekbayev using this scheme 

TABLE 1. 
(APPROXIMATE COMPUTATIONS USING SCHEME II), 

DETACHMENT O F  [BOW] SHOCK WAVE 

= 10, SPHERE, PERFECT GAS, x = 1.4. 

.~ 

0.133718 0,135718 0,135718 

0,17-4&07 0,1746O7 0. I74607 
- .  - - -  ~___ 

A s  another criterion of a method's accuracy one can compare the results ob- 
tained using different schemes. Table 3 presents data obtained with schemes I and 
I1 (N  = 2) in calculating flows of an ideal gas past a sphere (M 

Table 4 compares the calculated results of F. D. Popov using schemes I ( N  = 2) and / 17' 
?3I (N = 3,  M = 2-5) for the same case. A s  can be seen from these comparisons, 
satisfactory agreement exists between results obtained with both schemes, although 
each of them uses approximate representation of functions in diametrically opposite 
directions. This points to reliability of the results and to the fact that the starting 
differential operator is approximated with sufficient accuracy. 

= 10, x = 1.4). 
03 

-~ 
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T A B L E  2. 

TATIONS USING SCHEME II) Moo = 10, SPHERE,  P E R F E C T  
GAS, z = 1.4. 

DISTRIBUTION OF GAS VARIABLES ALONG 
T H E  AXIS O F  SYMMETRY S = 0 (APPROXIMATE COMPU - 

0.1744 
0.1738 

-0.OW6 

O.W%l 
0.WSB 

- 0 . ~ 9  

4 

1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 ,oo 
0.75 
0.75 
0.75 
0.75 
0-75  

0.50 
0.50 
0.50 
0.50 
0.50 

0.25 
0.25 
0.25 
0.25 
0 - 2 5  

0.00 
0.00 
0-00 
0.00 
0.00 

- - 
-0.0117 o 
-0.0116 0 

0.4523 0,4081 
0.4512 0,4083 

N 

2 
3 
4 
5 
6 

2 
3 
4 
5 
6 

2 
3 
4 
5 
6 

2 
3 
4 
5 
6 

2 
3 
4 
5 
6 

U 

-0.170781 
-0.170782 
-0.170762 
-0.1 io763 
-0.1 70783 

-0.12-1089 
-0.124210 
-0.124209 
-0.124209 
-0.12-1209 

-0.080 bi' 1 
-0.08 10 30 
-0. Ob: 1 0-1 7 
-0.0810 16 
-0.0810 4C 

-0.039357 
-0.039962 
-0.039964 
-0.039961 
-0.039961 

-0.0000 17 
-0. ouou02 
-0.000024 
-0.OOOO29 
-0 000029 

L' 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

8 
0 

0 
0 
0 
0 
0- 

P 
0.792 SI 7 
0.79251 7 
0.79251 7 
0.792517 
0.79251 7 

0.832373 
0.832496 
0.832470 
0.832.; 70 
0.i332.170 

0.659074 
0.856978 
0.1569S3 
0.1~S9S-l 
0. t(5b.36 1 

0.874149 
0.8741 IO 
0.874 123 
0. S7J112,I 
0.87-4 124 

0.879103 
0 ~ 879 102 
0.8791 03 
0. S79103 
0.879103 

5.7142d6 
5.7 1-128 3 
3.714235 
5.7 1 4 2b.5 
6.714285 

5.91 78 12 
5.918584 
5.918601 
5.9 1 8602 
5.9 1FG02 

6.0 530 90 
6.052ijl5 
6.0323 ;4 
6.0?7-. : 3  
8.0 52 6.i 3 

t3,12.5.::25 
6,122551 
6,1286.53 
6 ,126X3 
6 %  12bS53 

t3.1335cs 
ti.153569 
6.133.5U9 
6.153509 
6.153339 

J-LI 1 

.~ r 
0.138890 
0.13SGQ13 
0.13859 1 
0.13.3691 
0.13369 1 

O.lLic733S 
0.1 io653 
0.1 102.33 
0.14uc53 
0 .  1.10;js 

0 l! lS23 
D . 1 . I  1 3 1 3 
G.14 1919 
i?. 141 310 
0.1-I1!~!19 

0.112:330 
O.l.i26%9 
U.li2.329 
0.1-i21;20 
0.1-12623 

0.1'12.>Cl 
0. 1 , i2t;G1 
0.1426s I 
0.1-12551 
0.1 12331 

TABLE 3. COMPARISON O F  COMPUTATIONAL RE-  
SULTS USING SCHEMES I AND I1 ( N  = 2) ,  Moo = 10, 

S P H E R E , P E R F E C T  GAS, x = 1.4. 

- 

Y 

V 

? 

1 

* I  2 Coordinates of points 

0.1387 0.1420 0.1 128 
;I I o , I ~ P ~ ]  o.i.ii3)o.i 1281 

0.1444 
0,1436 

-0,1315 
-0.1522 

0.2742 
0.2757 
0.7338 
0.7325 

0,1288 
U. IZJ7 

5 - 0.1 
5 - 0.345 

-0.0726 
-0.0728 
0.2431 
0.2-131 

0.7614 
0.7610 

0.1337 
0.1336 

. .  
5 - 4  

I - 0.35 - _ _  

0 
0 

0.2078 
0.20ea 

0.798 
O.lS11 
0.1388 
0.1388 

0 3 a 2  0.5332 03626 
0.5877 1 0:53i3 1 0.4C18 

0,1048 0.1134 0.11b8 
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TABLE 4. COMPARISON OF COMPUTATIONAL RE- 
SULTS USING SCHEME 111 (UTILIZING APPROXIMA- 
TIONS) AND SCHEME I (N = 2) Ma> = 10, PERFECT 

GAS, x = 1.4, SPHERE. 
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- 0 . i m  
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4 

5 
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4 

S 

Scheme I 

0,900 0.1555 0.8591 
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The accuracy of the method can also be estimated by checking, in the process 
of numerical solution, of known exact relations, which are not used in constructing 
the approximating scheme (such as  the integrals of the start ing system, equations 
of constant flowrate, constant entropy along streamlines, etc. ). Calculations show 
that for  scheme I in the second approximation the condition of constant flowrate is 
satisfied for anystreamtubeswithan error  up to 0.1%, while in scheme 11, where 
the entropy is not used in the starting system of equations, ' S  = S ,  ( y )  is satisfied 
to within the second approximation with an er ror  up to 1%. 

Figure 3.12 also illustrates the accuracy of schemes of the method of integral 
relations. Figures 3.12a and b compare the computed results for a sphere using 
scheme I (Ma = 4, x = 1.4) and of calculations by the finite difference scheme of 

1341. As is seen, when the mesh is made "finer" the results obtained by the finite 
difference method approach those obtained by the method of integral relations. 
Figure 3.12 shows thevariation in the location of the shock wave E (  s )  and the pres- 
sure distribution along a sphere obtained from computations with different approxi- 
mations ( N  = 1, 2, 3) by means of schemes I and II. 

/17 8 - 

These estimates show that the method converges rapidly and also that the results 
using both schemes become virtually identical a s  early as in the second or  third approxi- 
mation. 

The above algorithms were developed for different cases of flow by the authors 
of h 6 1 .  
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Figure 3.12. 

a) and b) Sphere, Ma, = 4, Y = 1.4; - - Method of 
Integral Relations ( N  = 2); A ~4 - Computation "Aff, 
Method of Finite Differences; . . . - Computation rrgrr 
Method of Finite Differences; c) Scheme I (. . . - N = 
2), Scheme TI (--- - N = 1, s = 1.25: - - N = 2, 10 
S x1.25:  -.-- N = 2 ,  s = l :  ACIA - N = 3 ,  s=l); 
K = 1.4. 
10 

5. The above numerical schemes of the method of integral relations have 
come into extensive use in computations of supersonic flow past bodies in the USSR 
and abroad. The method has been sufficiently effective in the study of the flowpattern 
for bodies of various shapes. The use of standard programs of algorithms described 
above makes possible serial calculations of flows past bodies with detached [bowl 
shock wave with sufficient accuracy on medium-capacity computers. 

/179 - 

We shall now discuss individual studies carried out lately and shall present 
some of their results. More details can be found in the cited references. 

Scheme I [ 231 was used for developing a method for calculating equilibrium 
gas flows. The calculations were made for various gas mixtures. In particular, 
bodies with a sharply varying curvature were considered. Figure 3.13a depicts 
shapes of shock waves and soniclines, while Fig. 3.13b displays the distribution 
of pressure eo and temperature T (referred to the corresponding values in the 0 
stagnation point) over the surface of a sphere ( 6 = b / o  = 1 1 ai12 eiiipsoids of revo- 
lution with different blunting radius. It is seen that with an increase in the blunting 
radius (in 6 )  the flow variables in  the subsonic domain vary increasingly slowly; 
however, here the manner in which quantity E (  s ) - detachment of the shock wave 
from the body, behaves changes. 

Calculations for equilibrium gas flows using schemes I and I1 with allowance for / 180 
ionization were carried out by Yu. P. Lun'kin, F.D. Popov and T. Ya. Timofeyeva 

2' [261. Figure 3.14 displays curves of e o ,  density and mass concentrations of 0 

0 and 0 (for oxygen) and molecular concentration of 0 for air in the stagnation 
+ 
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. . .. I * 

b 

Ma = 6, v = 1, pa = 1 atm, Ta = 300°K, 

a) --_ y = 1.4, - - Air at Equilibrium; 
b) Air at Equilibrium. 

Figure 3.13. 

point of the body as  a function of Ma. Computational results without ionization and 

for a perfect gas with x = 1.4 are presented for comparison. The nonmonotonic 
behavior of ( M, 1, which is "spoon-shaped", is determined by the nonmonotonic 
nature of density variation, which is due to different contributions made by the vibrai 
tional energy, dissociation and ionization to the enthalpy of the gas (which is par- 
ticularly clearly seen for oxygen). Comparison of experimental data on the dis- 
tance between a detached [bow] shock wave and the body with computed results can 
thus serve as a good criterion in the study of various physio-chemical processes 
occurring across the shock front. 

- /181 

An item of great interest is the computation of flow past blunt bodies with a 
discontinuity in the curvature, o r  sharp corner in the generatrix. For small 
"rounding1' radii F (referred to the middle section of the body) o r  a sharp corner 
in the contour, the values of some derivatives will have a discontinuity at ray s = 3 ,  
where the curves forming the contour o r  generatrix join, and this involves difficulties 
in computations, if smoothing is not carried out beforehand. 

M. M. Golomazov [261 used scheme I for a series of calculations (for an ideal 
as well a s  equilibrium-dissociated gases) for cylindrical bodies with roundings 1/; 
ranging from 1 to 64. Figure 3.15 shows flow patterns and the pressure and tem- 
perature distributions along the body. One's attention is attracted by the peculiar 
shape of the sonic line for l/r = 64, which is due to a sharp swing in the flow in the 
vicinity of the sonic point. 

/ 182 
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a 

Figure 
a) Equilibrium Flow of Oxygen, 

. -- 0. I 
5 i0 ;5 20 25 M, 

'2E 6 

0. f :P* 2- i,4 

5 I O  i5 20 25 30 M, 

2- i,4 :v , l .  . , * 
5 I O  i5 20 25 30 M, 

b 
3.14. 
G = 1, v = 1, p = 0.01 atm, 

OD 
Too = 290°K, - - Calculated with Ionization, --- - Calcu- 
lated without Ionization, b) Equilibrium Flow of Air ,  6 = 10, 
v = 1, p 
ronization; --- - x = 1.4. 

= 0.01 atm, Too = 290°K, - - Calculated with 
00 

V. F. Ivanov [26, 351 utilized scheme I and the method of characteristics for 
developing a general method of integrated computation of mixed a s  well as  of 
supersonic flow across the shock front. He was the first to construct and imple- 
ment a computational algorithm for flow past bodies with a sonic inflection in the 
generatrix. 
Prandtl-Meyer solution holds, is computed by him using a differential equation, 
which is the compatibility condition along the characteristic of the second family. 
Figures 3.16 and 3.17 illustrate Ivanov's calculations. It is interesting to note the 
appearance in the supersonic zone of a "suspended" shock (which was verified ex- 
perimentally), the strength of which decreases rapidly a s  the distance from the 
body's nose increases. In a number of cases the calculations were continued for 
tens of rounding diameters, which was possible only when the initial data on the 
bounding characteristic were obtained with high accuracy. 

relations, successfully used by V. K. Dushin for calculating nonequilibrium gas 
flows. 

The swing in the flow in the vicinity of the inflection, where the 

Reference [301 presents a description of scheme I1 of the method of integral 

Considered a re  different conditions in the incident flow, multicomponent gas 
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Figure 3.15. 

= 1 atm; Tm = 300°K; --- - n =  1.4; . ~. - 
Ma = 5.8; v = 1, - - Air  at Equilibrium; 

perimentd Data of Fraasa." 
Po3 

0 f0 20 30 40 50 

Figure 3.16. Spherical 
Rounding, v = 1; Ma, = 5.8; 

- -  Computed; x x x - Ex- 
perimental Data of Fraasa. 

h s = 330, 0 = 00; z = 1.4; 

EX- 

/ 

Figure 3.17. Spherical 
Rounding, Y = 1; s  ̂ = 30°; 

Ma, = 6. 4; --- - 
- o = 1 0 ° ; x = l . 4 ;  - -  Moo - 

- -. - - - -  - 

*Fraasa, D. , An Experimental Investigation of Hypersonic Flow Over Blunt- 
Nosed Bodies at a Mach Number of 5.8. GALCIT Report No. 2, 1957. 
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mixtures, a s  well as the effect of individual reactions and of the dimensions of the 
body on the results. V. K. Dushin carried out calculations in the supersonic region 
also by the method of characteristics; here the numerical scheme developed by him 
1191 makes it possible to make computations for equilibrium as well as nonequi- 
librium flows using the same programs. Figures 3.18 and 3.19 (for a sphere) and 
3.20 and 3.21 Jfor a cylindrical body with spherical rounding with a sharp corner in 
the contour at s = 0.77) show the pressure, temperature and concentration distri- 
butions for atomic oxygen along the body's surface. 

- /183 

Figure 3.18. Figure 3.19. 
- Ma, - 10, p, = 

0.001 atm; Ta, = 

288'K; Ro = 1 m; 

Oxygen; --- - Equi- 

- Ma, - 10, p, = 0.001 

atm; Too = 288'K; 
R = l m ; - -  Non- 
equilibrium Oxygen; - -  Nonequilibrium --- - Equilibrium 
Oxygen. librium Oxygen. 

0 

It follows from this that departure from equilibrium of chemical transformation 
brought about by a sharp reduction in the particle velocities when crossing the shock 
wave has almost no effect, at the surface of a smooth body, on the pressure (density, / 184 
flow velocity), but a perceptible departure is observed of the temperature and con- 
centration of components from their equilibrium values (see Figs. 3.18 and 3.19). 
At the same time the departure from equilibrium produced by the sharp velocity 
rise near the sharp corner in the body results in a pronounced departure from 
equilibrium values of all the flow variables (see Figs. 3.20 and 3.21). 

V. K. Dushin and Yu. P. Lun'kin 1361 applied scheme lT to the study of the effect 
of an ensemble of various reactions in nonequilibrium air on the distributions of flow 
variables across the shock front and at the body's surface. It follows from Fig. 3.22a 
that the distributions of dimensionless p, T and u along the a x i s  of symmetry (and 
consequently also the location of the shock wave) in the flow of nonequilibrium air 
past a sphere are almost independent of the number of reactions for which allowance 
is made. A t  the same time the component concentrations are  highly sensitive to this 
(Fig. 3.22b). Figure 3 . 2 2 ~  shows the pressure, temperature and velocity distri- 
butions along the sphere surface. Figure 3.22d, e and f shows the variations in all 
the concentrations along axis of symmetry s = 0 of an intermediate line S = s ( 4 112 

/185 - 

169 



Figure 3.20. 
- M, - 10, p, = 0.001 

atm; T =288'K; 
R =lm;-- Non- 

equilibrium Oxygen; 
--- - Equilibrium 
Oxygen. 

03 

0 

I--------- ---__ 
0,03!-- 1 .c 

0 0.3 ;p $5 X,h0 
Figure 3.21. 
- - Moo - 10, Pm - 

0.0001 atm; Too = 

288OK; Ro = 1 m; 
- - Nonequilibrium 
Oxygen; --- - Equi- 
librium Oxygen. 

a h C 

Figure 3.22. Nonequilibrium Air, Mm = 15, p, = 0.01165 

= 0, R = 1 cm, 6 = 1 (Sphere); - - Six Reactions; 
;< s without Reaction VI; --without Reaction V; 
u - without Reactions IV-VR a) s = 0; b )  s = 0; d) s = 0; 
e )  s = s1/2; f) s = sl. 

atm, Too = 231°, 24 K,  (Cog), = 0.2646, (CN~), = 0.7354, 

('Ar), 0 
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and the bounding characteristic s = s1 ( 6 1. An allowance was made for all the six 
reactions: 

0, + M  2 2 0 + M ;  I N + 0 2 Z  N O + O ;  IV 
N, + M 2 2 N + M ;  I1 N , + O  N O +  N; 
N O + M  2 N + O + M ;  I11 N2 + 0 2 z  2RO. 

V 

I' I 

The N concentration is at minimum and that of NO is at maximum; these concen- 
trations move from the shock wave to the body with increase in s. 

2 

Yu. P. Lun'kov and F. D. Popov were able to develop an algorithm of scheme I 
for calculating flows of nonequilibrium gas mixtures [ 37 1 ,  which involved difficulties 
due to the unstable approximation of the second equation of motion. They have also 
investigated the simultaneous occurrence of nonequilibrium excitation of vibrations 
and of dissociation in a diatomic gas and considered the effect of these phenomena on 
supersonic flow past blunt-nosed bodies [ 381 . 

Here are  some of the results obtained by them. Figure 3.23  depicts the flow 

The dashes denote streamlines, and 
patterns for nonequilibrium oxygen (equilibrium vibrations) for a sphere (6 = 1) and 
ellipsoids of revolution with 6 - I O  and 100. 
the dash-dot lines (for the sphere) denote the line of 'local equilibrium", with 
dissociation predominating downstream and recombination predominating upstream 
of it. It is seen that the region fa r  from the stagnation point, where recombination 
has a pronounced effect becomes quite perceptible, This is due to sharp flow ex- 
pansion in this region, Figure 3.23  also depicts the pressure and temperature 
distribution along the surface of a sphere with radius Ro = 4 cm (curve 1) and 
Ro = 10 cm (curve 2). The absence of dissociation equilibrium has a marked effect 
on the temperature distributions (and on the degree of dissociation) and little effect 
on the pressure distribution; here these distributions tend to equilibrium with an 
increase in the sphere radius (curve 3). 

Figure 3 .24  shows the location and shapes of shock waves and sonic lines for 
/186 a sphere in the case of fully equilibrium flow of oxygen (curve l), flow with non- - 

equilibrium dissociation but equilibrium vibrations (curve 2* for Ro = 10 cm and 2 

for R = 1 cm), flow with nonequilibrium dissociation and nonequilibrium vibrations 
(curve 3) and "frozen" flow for )C = 1.4 (curve 4). One's attention is attracted by the 
characteristic shape of the sonic 'line in the case of vibrational-dissociation re- 
laxation. Figure 3 .25  shows t%e temperature change from the wave to the body 
along the axis of symmetry for the same cases (the change is greatest when vi- 
brational-dissociation relaxation is taken into account). Figure 3.26  shows the 
distribution of t, the average energy of vibrations across the shock front at rays 
s = const, while Fig. 3.27  depicts the distributions of translational T and vibrational 
T temperatures along the axis of symmetry. It is seen that vibrational degrees of /187 
freedom become highly excited immediately behind the wave (which also involves a 
r ise  in Tv), then dissociation starts developing and this results in reduction in the 
translational and vibrational temperatures. 

0 

V 

Complete equilibrium ensues only in the 
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o 0.2 0.4 ,016 0.a r.0 
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02 0.4 OP 0.8 1.0 

d e 

Figure 3.23. Nonequilibrium dissociation, 

0.01 atm, T, = 290°K. 

a) Ro = 10 cm, 8 = 1; b) b = 1 cm, 6 = 10; 
c)  b = 1 cm, ri = 100; d) and e)  E = 1. 

Equilibrium Vibrations, Ma = 10, p, - - 

0 Omo7 L 
4.0 0.5 0 0.2 0.6 I - $ .  

Figure 3.24. Figure 3.25. 
M, - - 10, pm = 0.01 Ma - - 10, p, = 0.01 atm, 

T, = 2900K. T, = 2900K, s = 0, Ro = 1 cm. 
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S = 0,25 
0.075 

0.0 5 

0.025 
0.05 

0 0.25 0,5 0,75 f - $  
0 0.2 0,6 ' - 5  

Figure 3.26. Figure 3.27. 
- Mm - 10, p, = 0.01 

atm, Tm = 290°K. 

Ma, = 10, p, = 0.01 

atm, T =290°K, s =O. 
00 

stagnation point, with T always remaining smaller than T. For the case when the 
effect of nonequilibrium excitation of vibrational degrees of freedom on the rate of 

sidered), the distributions of T and Tv had the same nature as Fig. 3.27, except 
that a region existed where T, >T. Quantity e, as well as Tvy has a maximum which 
decreases and moves toward the body as one moves away from the axis of flow. 
This is due to the fact that the gas temperature decreases upstream and this results, 
on one hand in increasing the relaxation time for excitation of vibrational degrees 
of freedom, and on the other hand in reducing the magnitude proper of the vibrational 
energy. 

V 

/188 dissociation was not considered (i. e. , a higher [than actual] velocity was con- - 

V. N. Fomin [ 39 1 developed a scheme for computing flows with radiation. Figure 
3.28 illustrates his results for a flow with equilibrium radiation without absorption, 
i. e. A = 0 (optically thin medium). He considered the flow of radiating air past a 

symmetry s = 0 a re  given (these data have subscript 0), along the intermediate line 
s = sl( 6)/2 (subscript 2) and boundary characteristic S = S 
observes a marked change in temperature (and, consequently, also in the stagnation 
enthalpy) and a relatively small change in pressure as compared with the case with- 
out radiation (E = 0). 
Kivel's data [261. 

/189 sphere. The temperature, pressure and velocity distributions along axis of - 
4 )  (subscript 1). One 

The radiative energy E was calculated by approximating 

A. I. Tolstykh [401 examined the case of supersonic flows past blunt-nosed 
bodies at low Re (for example, for flight in a rarefied atmosphere), where the usual 
subdivision of the entire flow into external inviscid flow and a boundary layer be- 
comes invalid. The entire flow is regarded as  viscous, obeying the Navier-Stokes 
law. 
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(wave) 
a b 

250°K; b) M, = 34.5, p, = 0.00025 atm, Ta, = 
250°K. 

Let us briefly consider the statement of the problem. The orthogonal coordinate 
system s, n was used. For n = 00 all the sought functions take on the values of var- 
iables in undisturbed flow. At a finite distance from the body one draws a 
sufficiently smooth line r (n = E ( s  )), the location of which is tied to the region of 
the smeared out "shock wave" (Fig. 3.29a). Line r was selected in a manner 
such that regions with relatively sharp changes in functions, characteristic of the 
wave structure, be located outside the ''shock layer" (05 ff 5 E(S ) and be defined 
as a line at which dwn/dn = 0. The Navier-Stokes equations were solved numerically 
for the %hock layer" region bounded by the body's contour and line r , while outside 
of it ( nl E ( s 1 )  these equations were replaced by similar, but simpler equations. 
Solution of these latter equations, satisfying the above conditions at infinity, permits 
one to find, with a certain accuracy, the boundary conditions for the equations in 

ditions for the sought functions, as well a s  for derivatives of the enthalpy and 
velocity components normal to line r should be satisfied at this line. For the sake 
of simplification the Navier-Stokes operator for n 1 E ( S 1 was represented in the 
form of a small-parameter expansion, with the parameter proportional to the cur- 
vature of line r . The calculated results presented here utilize only the zero term, 

/I! region n 5 E ( s ). Here, in accordance with the conservation laws, continuity con- 
L 
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a b 
Figure 3. kJe 

which represents the Becker system, describing local one-dimensional flow across 
the shock wave (the order of subsequent terms is - 0 ( I / n e  1 and higher). 

Single integration of equations of the zero approximation yields boundary con- 
ditions at line r . These relations, together with the conditions at the body yield 
a sufficient number of boundary conditions for  n = 0 and n = E ( s 1 for solving the 
complete Navier-Stokes equations in the region 05 n 5 E ( s ) with the unknown 
boundary t i  = E ( S  ). 

A. I. Tolstykh [26, 401 considered, in  the region of the "shock layer" equations 
obtained from the complete Navier-Stokes equations with the same order of accuracy 

as the boundary conditions (terms of the form e\ , , 
as a s  

missing). This system consists all the gasdynamic equations and equations of the 
boundary layer and possesses "elliptical" properties of upstream propagation of 
disturbances. The higher derivatives with respect to n in this system are  the 
same as in the complete equations, hence the boundary conditions for n = 0 and 
ti = E ( s 1 remain as before. 

The numerical algorithm of this system of equations was constructed by means 
of scheme I of the method of integral relations. The functions were approximated 
across the "shock layer" not with respect to coordinate n, but to the new variable 
t(n, s ) ,  which describes approximately the distributions of the tangential velocity 
component v for s = const. Upon changing the s, t coordinate system the variation 
of the function complexes being represented becomes smoother and approaches linearity 
(Fig. 3.29b). As in the case of an inviscid gas, here the number of boundary con- 
ditions of the approximating system for s = 0 was also found insufficient for starting 
integrating it (N variables are unkown) , which is a result of the tlellipticaltt prop- 
erties of the starting system of equations, which a re  due to the presence of partial 
derivatives of the pressure. It was found, however, that these unkowns are deter- 
mined by N regularity conditions at singular points ( N  - 1 saddle points and one 
node point). 

/191 - 

Figures 3.30-3.32 depict some results obtained by calculation for flow past a 
circular cylinder at M 

thermally insulated, viscosity coefficient I L - ~  ', ic = 1.4). Figure 3.30  displays 
distributi-ons of velocity v in different sections s = const. It is seen that as one 
moves away from the axis of symmetry distributions become "fuller. 

= 5 . 2  and Re = 12.5 ,  25 and 50 (the body was assumed to be 
u3 

Figure 3 . 3 1  
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gives the location of boundaries of the strips in the physical plane. Figure 3.32  
presents the distributions of pressure 6 0' 
friction coefficient cf along the body's surface (cr corresponds to free-molecular 
flow-diffusive reflection with accomodation coefficient of unity). As follows from 
the graph, the pressure distribution changes relatively little for different Re and is 
close to the distribution corresponding to the flow of inviscid gas (Re = co), while 
the variation of cf is very sensitive to that of Re. 

enthalpy ho and the variation in the 

Figure 3.30. Figure 3.31 .  Figure 3.32. 

M. M. Golomazov [261 used scheme I1 for developing a method for calculating 
the flow past &symmetrical bodies at an angle of attack. The problem is solved 
with exact consideration of the region of influence, which is ensured by introducing 
thecoordinatesystemq=s/sl(g,8);  t = n / & ( s ,  e ) ;  f i =  e ,  w h e r e s = s f % , S )  i s t h e  

equation of the characteristic surface bounding the region of influence, n = E ( s , 0 1 
is the equation of the shock wave, e is the angle in the transverse plane. The region 
of integration in the transverse plane (0s f i ~  n>' is subdivided by rays 9 = const, and 
then trigonometric representation with respect to S are  used. Functions with respect 
to 71 are  approximated in each meridional plane 9. = const , as  this is done in scheme 
I1 (Fig. 3.33).  Using the equations at the wave, body and compatibility equations at 
the characteristic surface we get a completely closed approximating system. 
Figurg 3 .34  shows calculations for perfect gas flows ( x  = 1.4) at an angle of attack 
(a, = 5 ) around ellipsoid of revolution ( 6 = 2). The shape and location of the shock 
waves, as well as the pressure distribution along the strip boundaries are  given 
for the different meridional sections 

___ / 192 

Figures 3.35  and 3.36  compare results obtained by the method of integral 
relations for flow at zero angle of attack past a sphere and ellipsoids of revolution 
with 6 = 0 . 5  and 1 . 5  (Moo = 3, 4, 6.05, 8.06) with data obtained experimentally by 
G. M. Ryabinkov [ 261 (ij is the pressure distribution along the body, referred to 
the stagnation-point pressure, 

r ,  e with a pole at the center of curvature of the nose) and V. G. Maslennikov and 
others (for E~ 1. 

/195 -~~ 0 
is the angle of the polar coordinate system e rad 
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Figure 3.33. 

Ma, = 10, K =  1.4, 6 = 2, a! # 0. 

Ma = 10, x = 1 . 4 ,  6 = 2; a) --- Q = 0 0 , 
0 c 0 01 = 1'; - Q = 5'; b) J =  0, ?I, 
Q = 5'; C) 9 = n/3, 2n/3,  Q = 5'. 

Figure 3.37 depicts the results of calculations for  the flow past a sphere 
( x  = 1,4) 

F. D. Popov using scheme I11 of the method of integral relations. The shapes of 
shock waves and sonic lines a re  shown; experimental data obtained by A. P. Bedin 
and G. I. Mishin a re  also plotted there (triangles). 

at low supersonic free-flow velocities (M = 1.15-2.0) obtained by 
03 

Different schemes of the method of integral relations, as well as results of 
numerous calculations of flow past blunt bodies are presented in tables and graphs 
in 1261. 
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2. A Scheme of the Methodofstraight Lines for Calculating 
SuDersonic Flows Past Blunt Boaes  With a DetacheT 

G. F. Telenin [41, 421 suggested a numerical scheme of the method of straight 
lines for calculating mixed flows in the vicinity of analytically describable bodies. 
This scheme uses rectilinear subdivision of the region of integration, the latter 
being bounded from top by some ray (and not by a boundary characteristic) passing 
in the transonic zone. Calculations here are carried out by the "analytic" scheme, 
with computations for each specific case carried out in  the elliptical region until 
the boundary ray passes into the transonic region and the data at it no longer have 
perceptible effect on the numerical solution. The use here of a rectilinear sub- 
dividing mesh for the region of integration makes it possible in general to simplify 
the form of the approximating operator. This scheme has been used for  a large 
number of calculations for ideal gases, flows with physico-chemical transfor- 
mations, as well as for three-dimensional flows (first done in 1964) [42]. 

1. We now present the computational algorithm, following [411. We consider 
for simplicity &symmetrical flow of a perfect gas ( x = const). The starting system 
of equations in dimensionless form can be written in the spherical coordinate sys- 
tem r , 6 ,  'p, as  follows: 

where u and v a re  projections of velocity vector w onto unit vectors i- and 8 ,  referred 
2 

00 max to wmm, p and p are  the pressure and density referred to P w 
respectively; r is referred to characteristic dimension L, while the streamline Y is 

2 referred to P.aowmaxL . 
symmetry and the body's contour. 
with a continuous limited derivative for analytically describable bodies. 

and Pm, 

A s  usual, the boundary conditions are  specified at the shock wave, axis of 
The solution is sought in a class of functions 

The boundary-value problem is more conveniently solved by replacing r , e by 
r. - ro 

the coordinate .g = E- , e ,  where r = r ( t) ) is the equation of the body's contour, 



while r = r , t o ) = r o  ( o ) + 

4 ,  0 the region of integration between the shock wave and the body is transformed 
into the strip 0 ;< 5 5 1. 

( o ) is the equation of the shock wave. In variables 
/197 - 

1 E 
Figure 3.38. 

W e  draw a ray 0 = corlst in the upper half plane m + 1 (Fig. 3.38) and represent 
the sought functions by means of Legendre polynomials, having reference to sym- 
metry of the flow with respect to e = 0. Then we get for functions 

and for derivatives with respect to e 

(3.15) 

(3.16) 
m 

0 2 j - 1  r;=  c 2 j r . o  . 
j - o  I 

0 0  0 Quantities u., v. and r are  linear functions of the values of u, v and rl at the 
J J  1 

m -1- 1 rays in the upper half plane. 

Substituting the expressions for derivatives with respect to 0 in Eqs. (3.14) and 
requiring that the obtained expressions be satisfied identically at each ray, we get 
an approximating system of ordinary differential equations for uk, vk, pk and Yh,  

18 1 
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where 

vk sin elr ; f %  

with subscript k denoting the values of variables at the kth ray, the prime denoting 
derivatives with respect to 0 ,  calculated from Eqs. (3.16). 

At the zero ray (k = 0) all the terms of the second and fourth of equations (3.15) 
vanish identically. To improve the system's accuracy it is expedient to introduce 
here equations for &) = U o .  0 

8 E O  

The approximating system should be supplemented by an equation relating the 
detachment E of the shock wave from the body to the angle the shock wave makes 
with the axis of symmetry, and the boundary conditions at the wave and body serve 
as boundary conditions for the system of ordinary differential equations. 

The algorithm of the numerical solution reduces to the following. Specification 
0 
J 

of m + 1 variables r. (j = 0, 1, . . . , m) determines approximately the equation of 
the shock wave, while the use of relationships at the shock wave makes it possible to 
determine all of the flow variables behind the shock wave. Solving then the Cauchy 
problem for the approximating system, we shall determine the values of variables in 
nodes at the surface of the body which, in general, do not satisfy the boundary con- 
dition on the body. Selecting by iteration values of r? in such a manner that the 
boundary condition at the body be satisfied in all the nodes on the latter's surface 

J 
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with the required accuracy, we shall obtain the sought solution of the approximating 
system in the mth approximation. 

The computational method thus consists in constructing a sequence of equations 
which satisfies in the limit all the boundary conditions in region ACFE: relations on 
the shock AC, symmetry conditions on the axis segment AE, and the boundary con- 
clition on the body's surface EF. 

- /199 

The additional condition of bounded derivatives (nonvanishing of the Jacobian 
d(  X ,  y ) / a  (uJ,~,,) ) is satisfied automatically, since each term of the sequence of 
approximate solution satisfies it. If the shape of the shock for which a limiting line 
arises in  region ACEF is initially specified o r  is obtained in the process of 
iteration, it will be automatically set aside by the program, since the process of 
computation would be interrupted. The sought solution and the solutions obtained in 
the course of iterations belong to the class of analytic functions for which the Cauchy 
problem is correct. 

2. Results calculated using this scheme a re  now presented [411. Figures 
3.39-3.42 illustrate the effect of Moo and of the shape of the body on the geometric 
pattern (relative location of the body's surface, shock wave and sonic line) of flow 
of a perfect gas with x = 1.4. Figure 3.39  shows the effect of changes in Ma> in a 

wide range for flow past an ellipsoid with ratio of semiaxes 6 = 2. Figure 3.40  
depicts the flow pattern at Ma = 3 for a family of bodies with the nose-section 
shape defined by the expression x n  + yn = 1. For n > 2 the radius of curvature Ro 
at the stagnation point is equal to infinity, while when n goes from 2 to 10 the ratio 
of the minimum (in the vicinity of the corner) radius of curvature R 

diameter (Rmin/D) changes from 0 . 5  to 0.07. Figure 3.41,  pertaining to flow at 
Ma, = 3 past Cassini's ovals, the contour of which is given by the expression 
(x2 + y212 + 2c2(x2 - y ) = a - c4 (a2 + c2 = l), shows the effect of a contour con- 
cavity in the vicinity of the stagnation point. Figure 3 .42  shows the flow at Ma, = 

3 past body "a", whose contour has a break i n  curvature at point c and is formed by 
conjugated circles with radii R /D = 1 in the vicinity of the stagnation point and 0 
R1/D = 0.2 in the vicinity of the middle section, and past body "b", consisting of a 
60° segment with a corner point. Figure 3.43  depicts the pressure distribution on 
the surfaces of bodies of various shapes in a flow with Ma> = 3. 

curves from merging into one, the polar angle is used as  the argument along the 
body's surface (for body "b" e = e I ,  where e 
center of the circle with radius R (see Fig. 3.41), for body "a'' e = e 
c, and then e = e 
Yu. Ya. Karpeyskiy. 

t o  the body's min 

To prevent the 

is the angle made with the pole at the 
up to point 0 

+ o. ,  - (see Fig. 3.42). The points represent experimental data of /201 - 

The supersonic flow of nonequilibrium air  past a sphere was studied with allowance 
for the kinetics of excitation of vibrations in O2 and N2, dissociation and transfer proc- 
esses, including N2 +. O2 = 2 N 0  and ionization by atom collisions N +O =.NO' + e, 
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Figure 3.40. Figure 3.39. 

5 U3 X 0.5 0 
Figure 3.41. Figure 3.42. 

4- N + N = N + e, and 0 + 0 = 0; +- e, which satisfactorily describe the process up to 

M pL 30. The effect of physico-chemical transformations occurring behind the shock 
wave on its detachment is shown in Fig. 3.44, where pressure p is given in bars, 
curves 1 and 2 correspond to the equilibrium, curve 3 corresponding to frozen, and 
the remaining curves to nonequilibrium external flow. 

2 

The calculations represented in Figs. 3.39-3.41 were carried out with a 9-point 
scheme (m + 1 = 9) and those in Fig. 3.42 with a 5-point scheme (m + 1 = 5). Without 
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Figure 3.43. Figure 3.44. 
Tm = 250°K, Ro = 0.015 m. 

dwelling here on the determined degree of accuracy, we note that the total e r ror  in 
the computation of most of the versions did not exceed 1%. A review of studies and 
results obtained using this scheme is presented in [431. 

3. On the Use of Pseudo-ViscosityLn Numerical Solution of the 
Inverse Problem of Gasdynamics 

Alongside with studies concerned with solving the direct problem of supersonic 
/2 02 - flow about a blunt body, a large number of investigations have appeared during 

the past several years concerning the so-called inverse problem. In methods of 
this type specification of the shock wave defines all the initial conditions, which 
makes it possible to construct a solution by moving step by step away from the 
wave. This somewhat simplifies the calculations: however, it requires assuming 
that the shape of the blunt body is that which is obtained from the calculations. 
In cases when a solution must be found for a body of specified shape, trial and 
er ror  must be used. 
of accuracy, which is determined by the number of variables of the shock-wave 
family . 

The required shape is obtained approximately to a given degree 

Another substantial shortcoming of methods of the inverse type is their inherent 
instability, brought about by the fact that the inverse problem of gasdynamics (which 
reduces to the Cauchy problem for a system of elliptical-type differential equations) 
is incorrectly stated. 

The main difficulties in numerical solution of the inverse problem here consist 
in the fact that the e r rors  due to approximating and rounding increase exponentially 
as one moves away from the shock wave. The solution becomes "spoiled" as early 
as after 10-12 steps. The difference grid which is obtained with the above limit on 
the number of steps may be found to be exceedingly coarse in many important cases, 
for example, in calculating the flow past blunt bodies with allowance for relaxation 
in the shock layer. 
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This instability can be overcome only with extreme difficulty. Thus, in the 
Van Dyke and Mangler methods this instability requires taking a small number of 
steps when computing from the shock wave to the body, which appreciably reduces 
the computational accuracy. In the Garabedian-Libershteyn method this instability is 
eliminated by analytically extending the initial conditions into the region of a fictitious 
third dimension, where the equations are parabolic and the solution is constructed 
by the method of characteristics. Systematic computations using this method can be 
carried out only with great difficulties. 

Practical needs have resulted in the appearance of various methods for regulariz- 
ing such problems [44, 451. M. M. Lavrent'yev [44] presented a method for solving 
the initial-conditions problem for the Laplace equation by introducing higher than 
second-order derivatives (with small coefficient) of the unknown function into the 
equation. 

L. I. Severinov developed a method for regularizing the inverse problem of - /2c 
gasdynamics by introducing into the differential equations of gasdynamics 
higher-order derivatives (with small coefficients) of the sought functions (pseudo- 
viscosity). This "damps" out the instability in computing the problem with initial 
conditions at the shock wave, and stable computations a re  possible. Following 
Severinov [461 we now present the algorithm developed for his method. 

1. We consider supersonic flow past a blunt body of revolution at zem angle of 

attack. The detached shock wave is specified in the form z , / R, = ch ($ - 9, where 

rl and z1 are cylindrical coordinates in the physical plane, with z measured along 
the flow from the point of intersection of the shock front with the axis of symmetry, 
R is the radius of curvalure of the shock wave at r = 0. The shock wave was 0 1 
selected in such a manner as to obtain a close-to-spherical body. 

1 

Let x and y be coordinates in an orthogonal curvilinear system, traveling with 

The Lam4 coefficients in 
the shock wave. Lines x = const a r e  perpendicular to the shock front, lines y = const 
are  at equal distances from i t  (at the shock wave y = 0). 
this coordinate system have the form Hx = 1 - y/( l  + x2), H = 1. We convert to the 
cylindrical coordinate system using the expressions 

Y 

We introduce second derivatives, with respect to x, of the velocity vector 
components into the differential equations of gasdynamics. For this we consider a 
gas which has a stress tensor with the components 

E av I au E 

P,, = -F+ H,[% - ($)0] ; pXy = Q,ax 2- , P,,4 P y y =  -P* 
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where u and v are the velocity vector components in  the x and y directions, 
respectively, p is the pressure, E~ and are small constant coefficients and . ,  (s) is the derivative at x = 0 (function of y). 

0 

Then the system of equations of gasdynamics (equations of motion, conservation 
of the mass and energy) will be written in the form 

where h is the specific enthalpy, p is the density, and r = r /R 
joined by equations of state and equations describing relaxation processes. 

This system is 1 0' 

The calculations described above were  carried out for a system of chemical 
reactions, coinciding with the Duff-Davidson system. Allowance was also made for 
nonequilibrium excitation of vibrational degrees of freedom of nitrugen and oxygen 
molecules. The calculations were made for a medium at rest, consisting of a 
mixture of argon and molecular oxygen and nitrogen, the mole fractions being 
0.0097, 0.2095 and 0.7808, respectively. 

2. The difference net in the x, y plane had rectangular cells. The derivatives 
of the sought functions contained in the gasdynamics equations were approximated by 
intersections marked by crosses in Fig. 3.45a. Derivatives with respect to x at 
the nth strip were approximated within ( A X  14. There was no need to use schemes 
with a higher degree of accuracy with respect to x. Successive approximations 
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were used in zones with large gradients. The derivatives of the concentrations were 
approximated by grid points marked in Fig. 3.45b. 

/F 

0 0.2 0,4 2. 

Figure 3.45. 

Figures 3.46-3.48 present some calculated results, which show the effects of 
instability in numerical computation of the inverse problem of gasdynamics and also 
the smoothing effect of pseudo-viscosity. The free-flow variables were p, = 1 

= 230°K, M, = 12.0, and Ro = 1 m. 2 W h  Y Ta> 

The broken lines in Figs. 3.46 and 3.47 represent second differences of u and 
v, calculated along the strip y = const at the 17th step from the shock wave for 
E 1 = E = 0, i. e. ,  without second-order derivatives in the gasdynamics equations. 
It was found from experience that the magnitude of the stagnation enthalpy is very 
sensitive to computational errors ,  and hence the problem was solved using the dif- 
ferential equation of conservation of energy, while the requirement that the stagnation 
enthalpy be constant was checked, in order to verify computational accuracy, at 
each intersection on the grid after all the variables were calculated. The broken line 
in Fig. 3.48 represents the stagnation enthalpy at the body's contour at E = E = 0. 
As follows from this figure, the variation in the stagnation enthalpy along the con- 
tour is excessively high. In addition, the contour obtained is a broken line and the 
impermeability condition is not satisfied at it. 

The smooth curves in Figs. 3.46 and 3.47, drawn along points obtained with 
= 10-3 , = - 1 0 - 2 ,  illustrate the smoothing effect of pseudo-viscosity. The 
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Figure 3.46. 
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Figure 3.47. 
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0 4 2  0.4 S 
Figure 3.48. 

stagnation enthalpy with the above values of E 

in the region of flow computation differed from the stagnation enthalpy of undisturbed 
flow by not more than 0.3%. 
line h = const, which shows that the computations are sufficiently accurate. In this 
example the minimum number of steps from the wave to the body was 16. 
selection of magnitudes of E and E always made it possible to obtain a smooth 
body contour and to satisfy the impermeability conditions at it. 

and 6 along the body’s contour and 

The calculated points lie in Fig. 3.48 on the straight 

Proper 
0 
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0 0.2 0.4 0.6 s 
Figure 3.49. 

0 0.2 on4 0.5 s 
Figure 3.50.  

The step for y was initially selectedinsuch a manner as to provide for required 
accuracy and stable computation of concentrations, after which values of e l  and e2 
were selected for eliminating the effect of the rapid increase in errors  inherent to the 
problem with initial conditions for a system of elliptical-type equations. It was 
possible to bring the number of steps between the shock front and body to 80-90. The /2 ~ 

calculations were carried out in a minimal region of influence. 

3. Figures 3 .45  and 3.49-3.52 illustrate results of computations with p, = 
= 218OK, Ma = 11.8, R = 1 m. Figure 3.45 shows the body's 0.595 kgf/m2, Too 0 

contour, shock wave, sonic line and streamlines. A dashed line on this figure also 
shows the contour of the body and the sonic line of the flow Trozen" in the shock 
front. Figures 3.49-3.52 present the mole fractions of atomic nitrogen, nitrogen 
oxide and the energy of vibrational degrees of molecular freedom for oxygen and 
nitrogen along streamlines drawn in Fig. 3.45. In all the figures s is the length 
along the body's contour o r  streamlines, referred to Ro, z = z1/R0. Values of s = 0 
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in Fig. 3.48 correspond to the stagnation point. In the remaining figures s = 0 at 
the shock wave. In this example AX = 0.03, A y  = 0,0025, = , ‘e2 = 

L . - -  .. - 
0 0.2 0.4 S 

Figure 3.51. 

0 0.2 0.4 
Figure 3.52.  

It can be expected, on the basis of the calculations above, that the use of higher 
derivatives will be beneficial also in numerical solution of other, similar problems. 
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The methods for doing so can apparently be quite numerous, depending on the con- 
ditions of the problem. 

Pseudo-viscosity was previously introduced into gasdynamics equations in 
order to enable continuous computations across shock waves in numerical solution 
of problems. The starting system of differential equations in these cases was of 
the hyperbolic type. The computations described above present a second use of 
pseudo-viscosity. 
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- 
CERTAIN NUMERICAL METHODS FOR SOLVING EQUATIONS 

OF THE BOUNDARY LAYER 

V. V. Shchennikov 

All the available numerical methods for solving boundary-layer equations can /214 - 
in substance be subdivided into two classes: a) methods based on the use of integral 
relations, which can be obtained from differential equations; b) finite-difference 
methods, based on difference representation of starting differential equations and 
boundary con& tions. 

The first  class of methods includes the well-known Pohlhausen method, the 
Loytsyanskiy-Dorodnitsyn parametric methods and, finally, the method of integral 
relations (simple and generalized) due to Dorodnitsyn, which has lately come into 
extensive use. 

An item of importance in considering finite difference methods in solving 
boundary-layer equations is the initial form of these equations. The known von 
Mises transformation transforms the equation of an incompressible boundary layer 
to the heat-conduction equation: 

where z = V2 - u is the energy defect. 

The convenience of this equation is apparently the possibility of using well-de- 
veloped methods for solving the heat conduction equation. This approach has the 
shortcoming that the coefficient of the leading derivative vanishes at the boundary 
of the solid body ( d G  = 0 
the singularity in the vicinity of the body. 
of the wall has the form 

for \y = 0 ) .  A way out of this situation is to isolate /215 - 
It is found that the solution in the vicinity 

u t a + bx + cx' + dx '+0(x2), 

where u = ( 1  - XIZ; X =- \y (a  , b m  , c - const). Approximating the solution by 

means of the polynomials 
Y 0 + Y  

'4 u - a ,  + b,x + C,X , 

we get a difference representation of the,equation, which is then solved by one of 
the methods. 
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Another transformation of boundary-layer equations is that due to Crocco. The 
equation in Crocco variables has the form 

where T = 

fact that the domains of definition of the solution ( 0 s . U  ,< 1 
transformation requires the existence of the single-valued function y = y@). It is 
obvious that accelerated flows in the case of a heated wall (when the longitudinal 
velocity distributions in the boundary layer have the form shown in Figs. 1 and 2) 
cannot be described in terms of Crocco variables. In the majority of cases dif- 
ference schemes a re  constructed with boundary-layer equations in terms of ordinary 
physical variables (velocity, density, pressure). 

. The advantage of this transformation is obvious and consists in the 
are finite. Clearly, this 

a x  

Figure 1. 
Uk) 

Figure 2. 

We shall consider two of the most interesting of the above methods for solving 
boundary-layer equations: the A. A. Dorodnitsyn method of integral relations and 
one of the difference methods. 

1. The Generalized - Method of Integral Relations /2 16 

This method was presented in general outline in 0. M. Belotserkovskiy’s lectures. 
We shall illustrate it in more detail in its application to equations of a laminar, in- 
compressible boundary layer. The starting equations have the form 

dU dl1 u - + u -  = V V ’  a x  a y  

d u + * = o  
a x  ay 
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with the boundary conditions 

u = u = = O  for y = O ;  
u + v  for y + - , 

where V = V(x). 

Using the Dorodnitsyn transformation 

Eqs. (1.0) are reduced to the form 

where 

w = u +  - ? U ,  V 

with boundary conditions 

- u = LO = 0 for = 0; 
u + l  for tl + eo 
- 

Subsequently we will have to know the behavior of this solution in the starting 
segment of the boundary layer. It is known that, if V = cxm, then the solution can be 
represented in the form 

o r  in the 4 I tl coordinates 
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for any m. Seeking a solution in the form /2 17 - 

L. 

we get for function v the known Falkner-Skan equation 

2m 2 
(p“’ + V V ”  + M+l (1-  9‘ 1-0 

with the condition 

We note that in this case the s t ress  at the wall is expressed, in terms of function 
v ,  by 

To obtain the integral relation w,e multiply the second of equations (1.1) by f(G), 
and the first of equations (1.1) by f’(u) and then add the expressions thus obtained. 
As a result we get (omitting the bar over u) 

All that is required of function f(u) is that it tend sufficiently rapidly to 0 as  q -, JO . 
Integrating the equation thus obtained with respect to q from 0 to (30, we get 

We introduce the notation 
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which finally yields the following integral relation 

In particular, for f(u) = 1 - u we have an analog of the known Karman integral re- 
lation for incompressible laminar boundary layers. /2 

Now we must select function I f ,  I N .  In order to do this, we utilize the fact that 
function Q in the boundary layer has the qualitative behavior: 

With reference to the above, we represent 8 in the form of the following power 
polynomial in U: 

similarly also for 110 : 

Coefficients a and b a re  functions of the values of e and 1 / t7 at interpolation points 0 0 

n 
“ N  ( n =  0, 1 ,  2, . .., N - I ) .  u = -  

It is natural to select functions f in the form n 

This ensures convergence of all the integrals in integral relation (1.2). We shall 
present the final form of approximating equations for the first  three approximations. 
It will be useful to note that these equations a re  universal and are  functions of only 
one variable typifying the body’s geometry, namely the ratio ?/V [ 11. 
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The - system of the first approximation. The approximating expressions a re  

e = - -  e o .  , 1 = T ( 1 - u ) .  1 
1 -u 0 

The differential equation has the form 

2 

The system of the second approximation: 

* i r  2Q 1G e l +  - (4e0 + 6 e 1 ) =  - - g-. v 00 1 

The system of the third approximation: 
. -  

(the dot denotes differentiation with respect to <). 

The question of initial conditions for the approximating system of ordinary dif- 
ferential equations remains open. 

The start  of the boundary layer ( 4 - 0 1 is a singular point of equations of the 
m approximating system. In fact, in the case of Vcx we can write 
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so that 

In order to use any of the numerical integration methods one must have initial 
conditions in a point fa r  removed from the singular point. It is easy to show that 
the solution of the approximating system of equations in any approximation can be 
represented in the form 

This can be easily shown by direct substitution into the system of equations. For 
example, in the second approximation 

or 

We note that quantities Ak are  related to function q of the exact Falkner-Skan 
differential equation by the following relationship; in particular, for A we have the 
relation 0 

This expression can be used for estimating the accuracy of approximate solutions 
obtained with the method under consideration (see the table). 
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- -- 
P 

-0.10 
0.00 
1 ,OD 
2.00 

- 1st 

0,4 1833 
0. moo0 
1,0000 
i ,32288 

__ . _ _  _.  ~ 

Approximation 
2nd 

separat 'n 
0,31692 
0.87247 
1.1937 1 

3rd 

0,232-1 6 
0.32908 
0.85056 
1,13252 

4th 

0.22255 
0,33191 
0.871 64 
1.19321 

Exact 
solution 

0,22576 
0,33206 
0,871 57 
1. I 9301 

Once the value of 0 ;  is found, the determination of the boundary-layer variables 
Cf, E and tj' * is elementary: 

e 2 ;  
6 

respectively in the l s t ,  2nd, 3rd and 4th approximations. Here I and V are the 
characteristic lengths and velocity 

/221 - 

In the vicinity of the point of boundary-layer separation obviously 0 -t -. In this 
vicinity the following approximating expression should be considered for e 

The computation can be carried out with the old approximations, but for sufficiently 
high 8 ,  one should convert to the new functions 

v ,  = l / e , .  

Numerical experiments carried out with the above substitution point to the possibility 
of computing up to the separation point and of finding the latter with sufficient accuracy. 
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The above method of generalized differential equations was applied successfully 
to calculation of boundary layers in a compressible heat-conducting gas [21 and to 
calculation of the compressible boundary layer of an ablating surface with allowance 
for diffusion in the gas mixture. 

2. The Method of Finite Differences . _. . .  

Equations of the boundary layer are  of the parabolic type and hence they can be 
treated to some extent by the tool of a priori estimates of the rate of convergence 
of difference methods presented in A. A. Samarskiy's method. Since he discussed 
model equations of heat conduction with simplest boundary conditions, we shall con- 
sider some of the specific aspects of the use of finite difference methods for 
problems of the boundary layer with incorporation of actual boundary conditions. 

-- 

A large number of various difference schemes for solving boundary-layer 
equations is presently available. We shall consider only two of them, which are 
most interesting from this author's point of view. It was previously mentioned that 
the construction of the difference scheme depends on the kind of starting differential 
equations. In conjunction with this I selected two approaches to the construction of 
difference schemes of computations, the substance of which is determined to a large 
extent by the form of the starting equations. 

1. The first difference scheme considered will be that suggested by A. L. Dyshko 
[31. If the independent variables x, y are replaced by von Mises variables, i. e. , 
( x ,  ry j ,  where Y is a stream function defined by the continuity equation, then the 
system of equations of an incompressible laminar boundary layer will be reduced to 
a single equation, which is the quasilinear equation of heat conduction 

/22 

2 2 where z = U (x) - u (x, y), with the boundary conditions: 

3 22 
id Y 

Equation (2.1) has a singularity at the body's surface Y =  0, since --i -+ - as  
p -+ 0. Obviously, it is difficult to construct a regular method for computing this 
equation, firstly, due to the singularity in the equation and secondly, due to the need 
to solve the equation in the infinite region 0 < Y < LI: . The domain of the solution can 
be bounded by introducing new independent variables. In fact, let 

where I is some constant allowing one to select a scale for y', then Eq. (2.1) will be 
0 
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written in the form 

with the boundary conditions: 

V(0, t )  = W2(t)  > o ;  V(1, t )  = 0; V(X,O)-O, 

where W 2  ( t ) = U 2 ( v i x ) .  For this equation, as before --t as  A -. 0. 
a X  

Now we must examine the nature of the singularity in  the solution of Eq. (2.2) 
in order to be able to construct a difference scheme allowing for computation up to 
the body's surface (X = 0). We assume that: 1) k.- is a continuous function of X in 
vicinity X =  0; 2) there exists -- 

cally increasing function. 

7 1. 
a t  

= A ; 3) boundary function W2( t ) z o is a monotoni- daxvl x L O  

The last limitation is not of substance and is used only to prove that 

It is subsequently assumed that v -= I ,  which obviously, does not detract from gener- 
ality, since it is reasonable to assume *J = const for an incompressible boundary layer. 

We consider the nature of the solution of Eq. (2.2) in the vicinity of X = 0 for 
2 2 d v P ( X )  

0 t = t Let W (t ) = Wo, and = p ( x  > 0. We write 4( X ) = --__ . For  t = t 
0' 0 a t  7 .  

( 1 -  X ) ' 2  

Eq. (2.2) becomes the ordinary equation 

We introduce a new function 

- 

W - u  - W 2 - A S .  
0 

(2.4) 
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using which Eq. (2.3) is written as 

q ( s )  = ,m*rr** , 
2 where R = - A - Wo. Because of Eq. (2.4), the boundary conditions for W (X) will be 

According to the first assumption q(X) is a positive and continuous function in the 
vicinity of X = 0, when W" > 0 in the same vicinity. With reference to Eq. (2.5) 
we find that 1v ( 
formula 

) > O., from which it follows that R >  0. Then using the Cauchy 

and Eq. (2.5), we get for W(X) 

using the mean-value theorem, we may write 

and 0 < 4 < X. 

Evidently, we have the following representation in the vicinity of X = 0 

w 
2R.r 

RT 

Substituting this expansion in Eq. (2.6), we get 

(2:6) 
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Returning to function V(X) we get the following expression for the latter in the 
vicinity of X = 0: 

Y - a + b X + c X %  + d X 2 + O ( X 2 ) ,  

where a, b, c and d a re  some constants. 

If then the solution is approximated at some grid region in the form of parabolas 
% 

+ bmX , + cnrXrn and we write the second derivative as Vm = a 

a v  then the first  derivative -- can be written in the form 
at 

where 7 is the lattice spacing in the direction of variable t and the difference scheme 
obtained as a result can be used for computation up to the body's surface X = 0. 

/225 The computational grid is specified by the equations - 
m% 

X,=- 
M'4 ' t n = n = '  

where a nonuniform grid, becoming denser at the body's surface, is selected in the 
X direction. 
by two considerations: 1) the existence of a singularity in the solution's behavior in 
the vicinity of X = 0; 2) convenience of obtaining with this grid estimates of the 
approximation and stability of the difference systems. 
a re  not given here, since they a re  quite simple but very cumbersome, and only the 
principal results will be given. 

The selection of this kind of subdivision in the X direction was directed 

The mathematical manipulations 

The principal term of the e r ro r  of approximating the second derivative with 
respect to X can be written in the form 

The approximating e r ro r  of the first derivative with respect to time obviously is 
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It is known from the preceding lectures that the selection of an explicit dif- 
ference scheme requires checking the latter for stability and determining the 
lattice spacing ratio which ensures this stability. It can be seen by examin- 
ing the behavior of the linear part of the errors that the sufficient condition for 
stability of the difference scheme has the form 

Then, if 6- is used to denote the linear part of the e r ror  in solving the difference 
equation 6 = u - u m ,  n ,  where u is the solution of the differential equation and 

u 
that 

is the solution of the corresponding difference equation), then it can be shown 
m, n 

Apparently, this estimate of the convergence of the difference to the differential 
solution is somewhat on the high side. 

One of the advantages of the above method is the small machine memory needed 
~ /2. 

for computations. 

2. In conclusion I wish to consider still another finite-difference method for 
solving equations of the laminar boundary layer [4 1. The item of importance in 
writing the difference scheme in this method is the fact that the starting boundary- 
layer equations a re  written in the form of laws of conservation of mass, momentum 
and energy, o r  in the so-called divergent form. 

The system of equations of the laminar boundary layer can then be written in the 
following vectorial form: 

. , n). (2.7) 

Vectors G,: express vector fluxes of mass, momentum and energy of a unit gas 
volume in the boundary layer. By virtue of arbitrariness of the volume V under 
consideration, Eqs. (2.7) yield the known differential equations of the boundary layer. 

We restrict ourselves to a two-dimensional boundary layer. E the body's 
generatrix s and normal n to the body are taken as the coordinates, then the boundary 
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conditions take the form 

where Q lC (S ) are  known functions, obtained from solving the problem of external 
flow of an ideal gas past a body 

where the plus and minus signs pertain to variables determined at both sides of the 
body's surface, which serves in boundary layer equations as a discontinuity surface. 
In the case when the body's surface disintegrates (evaporates o r  ablates), the con- 
ditions at it should be supplemented by the kinetic condition describing the evaporation 
o r  ablation mechanism. 
effect on the convergence of the numerical method. 

This condition is substantially nonlinear and has a marked 

The idea of constructing difference representations of equations written in the 
form of integral conservation laws (2.7) is related to the following obvious equation 

or  in the two-dimensional case 

where the directions of vectors ds' and de' coincide respectively with the directions 
of normals to a surface element and to a contour element. 

If now the domain of definition is subdivided by a curvilinear orthogonal grid 
- 8 - D  

s i  = i ~ s .  n = j A n and the integral 

with vertices ( s i ,  n - ; si , n j + l  ; s i + l  , n i + l ;  s i + l  , H i -  
formulas of numerical integration, then we get as a result a difference equation cor- 
responding to Eq. (2.8) for the area element in question. This method of constructing 
difference equations is a generalization of the known construction of difference equa- 
tions of through computation for a heat conduction equation with a discontinuous coef- 
ficient suggested by A. A. Samarskiy and A. N. Tikhonov. We shall not consider in 
detail the difference equations obtained, since this was done by A. A. Samarskiy. It 
will be only noted that the difference scheme thus constructed can be used for 

Ylc;;de for the contour enclosing an area element 
L 

) is written using some 
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computations also in the case when the boundary-layer equations contain discon- 
tinuous coefficients. 

The difference equations obtained by means of the above procedure can be 
solved by iterations. Here a solution of a system of linear equations must be found 
in each such iteration. lh general the solution of the system of linear equations 
corresponding to the starting boundary layer equations could have been found using 
the method of matrix factorization. However, using the physical nature of vectors 

'pic as vector fluxes of independent flow variables, it is possible to reduce the matrix 
factorization to a sequence of linear sweeps. 

Vector Gk can be written in the form 

-+ 

-t 

where 2 is the vector of the total mass flux; v k  takes on values c 
a vector whose projections are homogeneous functions of derivatives - . If the 

iterations a re  organized so that only quantities 'Pk  are  iterated with respect to the 
corrected quantities m' and f k ,  then obviously with this organization of iterations 
the computation in each iteration reduces to sequential solution of the equations of 
motion, diffusion and conservation of energy by the sweep method. It is possible 
to carry out iterations also for terms f k, while retaining the linear sweep+[ 51. The 
advantage of this computation consists additionally in the fact that vector tii with com- 
ponents pu and pu is sufficiently conservative, i.e., it changes little in the boundary 
layer. Hence the iteration process will converge sufficiently rapidly if conditions 
of impermeability or  of a given gas penetration are satisfied at the body surface, i. e,. 
i f m e n  = 0 o r  

is an unknown quantity, and is to be found in the course of solution, which is 
the case for a boundary layer at a disintegrating surface, then the convergence of 
iterations may become markedly poorer o r  there may be no convergence at all. In 
this case the computations can be stabilized by using so-called damping of the 

quantity ( if 1 0 = (P  U 10 Quantity p u  in the ('I + 1)th iteration is calculated from 
the formula 

u and T, fk is 

/2 
CY' a Q k  - -  an 

-D 

+ 

+ +  Z = f ( s  1, where f(s)  is a given function, for n = 0. If, however, 

- 1 + 1  where ( p u  )o 

The above approach was used for solving boundary-layer problems at ablating 
blunt-nosed bodies of revolution under various evaporation conditions at their sur- 
faces. Computations were made for nonequilibrium evaporation, constant penetra- 
tion rate and penetration rate sepcified in the form of a discontinuous function [4]. 

is found from the evaporation condition at  the surface. 
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The same method was used for calculating the boundary layer in hypersonic 
nozzles. Flows in such nozzles have high negative pressure gradients and a sharp 
increase in the boundary layer thickness. The use of damping in the entire flow 
field in the boundary layer within the framework of the above numerical method 
provided results of good accuracy with a small number (3-5) of iterations. 

We note in conclusion that the method of a priori estimates of convergence and 
er ror  of the numerical method developed by A. A. Samarskiy for particular classes 
of parabolic-type equations cannot be used for problems considered here due to 
their pronounced nonlinearity. Hence the accuracy of the method was estimated a 
posteriori, by decreasing lattice spacings and increasing the number of iterations. 
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of inforiitaiion concerning its actitdies and the restilts thereof.” 

-NATIONAL AERONAUTICS A N D  SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica- 
tion, or other reasons. 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 

, .  
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and 
Technology Surveys. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 


